DOI QR코드

DOI QR Code

Hepatic Oxygen Free Radical Metabolizing Enzyme Activities and Serum Lipid Profile in Rats Fed Diet Supplemented with Monascus Pigment

흰쥐에 있어서 홍국 첨가 식이가 혈청 지질성분 및 간조직의 유해산소 대사효소활성에 미치는 영향

  • 유대식 (계명대학교 미생물학과) ;
  • 김현희 (계명대학교 공중보건학과) ;
  • 윤종국 (계명대학교 공중보건학과)
  • Published : 2003.03.01

Abstract

To investigate the hepatic oxygen free radical metabolizing system and changes of serum cholesterol levels in rats fed a diet supplemented with Monascus pigment (MP), Sprague-Dawley rats weighing about 300 g have been fed a diet supplemented with 2% or 4% MP for a month. The rats fed 2% MP supplemented diet gained less body weight than the control rats and those fed 4% W supplemented diet. Those fed 2% or 4% MP supplemented diet had no remarkable changes in liver function on basis of liver weight/body weight, serum levels of xanthine oxidase, alanine amino transferase activity In rats fed 2% and 4% MP supplemented diet, hepatic cytochrome P45O dependent aniline hydroxylase activity significantly (p<0.05) declined about 32%, 37% respectively and showed no significant differences between rats fed 2% and 4% MP supplemented diet whereas those fed 2% MP supplemented diet showed about 29% increased hepatic xanthine oxidase activity. And hepatic glutathione S-transferase and glutathione peroxidase activites in rats fed 2% MP supplemented were more increased by about 17%, 28% respectively than the control rats. There were no significant differences both in between those fed 2% and 4% MP supplemented diet. Especially rats fed 2% or 4% MP supplemented diet showed a significant (p<0.05) increase in hepatic catalase activity by 41%, 25% compared with control rats and those fed 4% MP supplemented diet showed more decrease in tendency of catalase activity than those 2% MP supplemented diet. But hepatic superoxide dismutase activity and glutathione content were appeared to be similar value among three groups. On the other hand, rats fed 2% MP supplement diet showed 17% increased levels of serum HDL-choresterol and 26% decreased value of LDL-cholesterol and serum level of triglyceride. But no different value were appeared between those fed 2% and 4% MP supplemented diet. Especially in those fed 2% and 4% MP supplemented diet, artherogenic index were significantly (p<0.05) declined by 37%, 29% respectively compared with control. In conclusion, it is likely that rats fed a diet supplemented with a proper quantity of MP may have the potential of oxygen free radical detoxication and lowering of artherogenic index.

홍국 첨가식 이로 성장시킨 흰쥐에 있어서 간조직의 유해산소 기구와 혈청지질 성분의 변동에 어떠한 영향을 미치는지를 검토할 목적으로 Monascus로 제조된 홍국을 사료에 2%, 4% 첨가시켜 1개월 간 사육한 후, 처치하여 다음과 같은 결과를 얻었다. 300g 내외의 흰쥐를 홍국 첨가식 이로 1개월 간 성장시키는 동안 2% 홍국 첨가식이군의 체중증가율은 대조군 및 4% 홍국 첨가식이군보다 다소 낮게 나타나는 경향을 보였으며, 이러한 조건 하에서 간 기능은 2%, 4% 홍국첨가 식이군 모두 별다른 변화를 나타내지 않았다. 유해산소 생성 에 관여하는 cytochrome P450 dependent aniline hydroxylase 활성은 2% 및 4% 홍국 첨가식이군이 대조군에 비해서 각각 32%, 37%의 유의한(p<0.05)감소를 보였으며 홍국 첨가식이 농도를 달리한 실험군 간에 유의한 차이가 나타나지 않았다. 그러나 xanthine oxidase 활성은 2% 및 4% 홍국첨가 식이군이 대조군에 비해서 각각 29%, 36% 증가되었으며 2군간에는 의의있는 차이는 없었다. 유해산소 해독에 관여하는 glutathione-5-transferase와 glutathion peroxidase 활성은 2% 및 4% 홍국 첨가식이군 모두 대조군에 비해서 각각 1.1%, 23%의 유사한 증가를 보였으며, 특히 Catalase의 활성은 2%및 4% 홍국 첨가식이군이 대조군에 비해서 각각 41%, 25%의 유의한 (p<0.05) 증가를 보였다. 그리고 superoxide dismutase의 활성과 간조직 glutathione의 함량은 2% 및 4% 홍국 첨가식이군이 대조군에 비해서 높게 나타나는 경향을 보였으며, 2% 흥국 첨가식이군이 4% 홍국 첨가식이군보다 약간 높게 나타났다. 한편 혈청 중 HDL-cholesterol은 2% 및 4% 홍국 첨가식이군이 대조군에 비해서 16% 및 8%높게 나타나는 반면, LDL-cholesterol은 대조군에 비해서 다같이 약 26% 정도 감소되는 경향을 보였고, triglyceride의 함량 역 시 2% 및 4% 홍국 첨가식이군이 대조군에 비해서 모두 약 25% 정도 감소되는 경향을 보였다. 이때 동맥경화지수는 2$^{\circ}C$ 및 4% 홍국 첨가식이군이 대조군에 비해서 각각 39%, 29%의 유의한(P<0.05) 감소를 보였으며, 2% 홍국 첨가식이군 4% 홍국 첨가식이군보다 감소의 정도가 크게 나타나는 경향을 보였다. 이상 실험결과를 종합해 볼 때 홍국 성분은 oxygen free radical의 일종인 $H_2O$$_2$를 제거하는 효소인 catalase의 활성을 증가시킴으로서 유해산소에 의한 동맥경화증의 발생을 예방시켜 줄 수 있을 것으로 사료되나 이점에 대해서는 추후 계속적인 연구 검토가 행해져야할 것으로 생각된다.

Keywords

References

  1. Haws T, Shima T, Isobe A, Kimura, S. 1975. Studies on the structure of two pigment obtained from Monascus sp. J Jap Soc Food Nutri 28: 497-502
  2. Hadfield JR, Holker JSE, Stanway DN. 1967. The biosynthesis of fungal metabolites. Part II. J Chem Soc 19: 751-754.
  3. Kurono M, Nakanishi K, Shindo K, Tada M. 1963. Biosynthesis of monascorubrin and monascoflavin. Chem Pharm Bull (Tokyo) 11: 359-362. https://doi.org/10.1248/cpb.11.359
  4. Fowell ADG, Robertson A, Whelly WB. 1956. Monascorubramine. J Chem Soc Special Publ 5: 27-34.
  5. Hiroi T, Shima T, Isobe A, Kimura S. 1975. Studies on the structure of two pigment obtained from Monascus sp. J Jap Soc Food Nutr 28: 497-502.
  6. Robinson JA. 1991. Polyketide synthase complexes: their structure and function in antibiotic biosynthesis. Phil Trans R Soc Lond B 332: 107-114. https://doi.org/10.1098/rstb.1991.0038
  7. Endo A. 1980. Monacolin K a new hypochloesterolemic agent that specifically inhibits 3-hydroxy-3-methyl-glutaryl coenzyme a reductase. J Antibiol 33: 334-336. https://doi.org/10.7164/antibiotics.33.334
  8. Martinkova L, Juzlova P, Vesely D. 1995. Biological activity of polyketide pigments produced by the fungus Monascus. J Appl Bacteriol 79: 609-616. https://doi.org/10.1111/j.1365-2672.1995.tb00944.x
  9. Bakker SJ, IJzerman RG, Teerlink T, Westerhoff HV, Gans RO, Heine RJ. 2000. Cytosolic triglycerides and oxidative stress in central obesity: the missing link between excessive atherosclerosis, endothelial dysfunction, and beta-cell failure? Atherosclerosis 148: 17-21. https://doi.org/10.1016/S0021-9150(99)00329-9
  10. O'Keefe JH, Lavie CJ, McCallister BD. 1995. Insights into the pathogenesis and prevention of coronary artery disease. Mayo Clin Proc 70: 69-79. https://doi.org/10.4065/70.1.69
  11. Prasad K, Kalra J. 1993. Oxygen free radicals and hypercholesterolemic atherosclerosis: effect of vitamin E. Am Heart J 125: 958-973. https://doi.org/10.1016/0002-8703(93)90102-F
  12. Reitman S, Frankel S. 1957. A Colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminase. Am J Clin Pathol 28: 56-63.
  13. Karmen A. 1955. A note on the spectrophotometric assay of glutamic oxaloacetic transaminase in human blood serum. J Clin Invest 34: 131-133.
  14. Stirpe F, Della Corte E. 1969. The regulation of rat liver xanthine oxidase; Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem 244: 3855-3863.
  15. Yoon CG. 1984. A modified colorimetric assay for xanthine oxidase in rat liver extracts. Keimyung Research Journal (Keimyung Junior College) 2: 295-308.
  16. Bidlack WR, Lowery GL. 1982. Multiple drug metabolism: p-nitroanisole reversal of acetone enhanced aniline hydroxylation. Biochem Pharmacol 31: 311-317. https://doi.org/10.1016/0006-2952(82)90176-9
  17. Habig WH, Pabist MJ, Jakoby WB. 1974. Glutathione Stransferase: The first enzymatic step in mercapturic acid formation. J Biol Chem 249: 7130-7139.
  18. Paglia ED, Valentine WN. 1967. Studies on the quantitative and qualitative characterization of erythrocytes glutathione peroxidase. J Lab Clin Med 70: 158-169.
  19. Aebi H. 1974. Catalase. In Methods of Enzymatic Analysis. Academic Press, New York. Vol 2, p 673-684.
  20. Martin JP Jr, Dailey M, Sugarman E. 1987. Negative and positive assays of superoxide dismutase based on hematoxylin autooxidation. Arch Biochem Biophys 255: 329-336. https://doi.org/10.1016/0003-9861(87)90400-0
  21. Ellman GL. 1959. Tissue sulfhydryl groups. Arch Biochem Biophys 82: 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
  22. Schefler WC. 1980. Statistics for the Biological Sciences. Addison-Wesley Publishing Company, USA. p 84-89.
  23. Cotran RS, Kurma V, Collin T. 1999. Cellular pathology I. In Robbins pathologic basis of disease. 6th ed. WB Saunders Company, Philadelphia. p 1-29.
  24. Oyanagui Y. 1989. Superoxide dismutase and active oxygen modulators. Nihon Igakukan, Tokyo. p 17-36.
  25. Yoon CG, Lee MK, Lee SI. 1998. Effect of growth on the enzyme activities of oxygen free radical generating and scavenging system in $CCl_{4}$-treated rats. Kor J Gerontol 8: 35-42.
  26. Yoon CG, Chae SN, Shin JK. 1998. Effect of Gam-Roa Tea on the metabolizing enzyme activity of some free radical and alcohol in rats. J Korean Soc Food Sci Nutr 3: 67-70.
  27. Yoon CG, Kim HH, Chae SN, Oh MJ, Lee GH. 2001. Hepatic oxygen free radical and alcohol metabolizing enzyme activities in rats fed diets supplemented with Lycium chinense ethanol extract. J Korean Soc Food Sci Nutr 30: 668-672.
  28. Yoon CG, Chae SN, Huh NE, Kim HS, Yu DS. 1999. Effects of Nuruk or wheat bran supplemented diet on the serum levels of cholesterol and activities of hepatic oxygen free radical metabolizing enzymes in rats. J Korean Soc Food Sci Nutr 28: 212-217.
  29. Chow CK, Tappel AL. 1974. Response of glutathione peroxidase to dietary selenium in rats. J Nutr 104: 444-451.
  30. Leibovitz BE, Siegel BV. 1980. Aspects of free radical reaction in biological systems: aging. J Gerontol 35: 45-56. https://doi.org/10.1093/geronj/35.1.45
  31. Halliwell B. 1978. Biochemical mechanism accounting for the toxic action of oxygen on living organisms: The key role of superoxide dismutase. Cell Biol Int Rep 2: 113-128. https://doi.org/10.1016/0309-1651(78)90032-2
  32. Holmberg NJ 1968. Purification and properties of glutathione peroxidase form bovine lens. Exp Eye Res 7: 570-580. https://doi.org/10.1016/S0014-4835(68)80011-9
  33. Pitt B. 1997. The potential use of angiotensin-converting enzyme inhibitors in patients with hyperlipidemia. Am J Cardiol 79: 24-28.
  34. Frederick JS, Ramzi SC. 1999. Blood vessels. In Robbins pathologic basis of disease. 6th ed. WB Saunders Company, Philadelphia. p 505.
  35. Tall AR, Mistilis SP, Shields RJ. 1977. Cholesterol and phospholipid: influence of body weight on the output of lipids in mesenteric lymph. Aust N Z J Med 7: 151-155. https://doi.org/10.1111/j.1445-5994.1977.tb04683.x
  36. McCune SA, Jurin RR. 1987. Effect of mevinolin on cholesterol metabolism in obese and lean Zucker rats. Biochem Pharmacol 36: 875-879. https://doi.org/10.1016/0006-2952(87)90179-1
  37. Stauske D, Haude W. 1982. Lipid concentrations in liver cell fractions in the rat in diet induced obesity. Acta Biol Med Ger 41: 665-674.
  38. McNamara DJ. 1985. Cholesterol homeostasis in lean and obese male Zucker rats. Metabolism 34: 130-135. https://doi.org/10.1016/0026-0495(85)90121-0

Cited by

  1. Effect of Fermented Angelica gigas Nakai on Lipid Metabolism in Orotic Acid Model Rats vol.24, pp.7, 2014, https://doi.org/10.5352/JLS.2014.24.7.743
  2. Effect of Red Yeast (Monascus purpureus) Rice Supplemented Diet on Lipid Profiles and Antioxidant Activity in Hypercholesterolemic Rats vol.43, pp.1, 2014, https://doi.org/10.3746/jkfn.2014.43.1.016
  3. Effect of Diets with Red Yeast Sweet Potato Powder Supplement on Fecal Amount and Lipid Metabolism in Rats Fed a High-fat Diet vol.41, pp.4, 2012, https://doi.org/10.3746/jkfn.2012.41.4.487
  4. The Effect of Rice with Aspergillus terreus on Lipid Metabolism in Rats vol.47, pp.5, 2015, https://doi.org/10.9721/KJFST.2015.47.5.658
  5. Effect of Monascus Pigment Extract on the Alcohol Metabolism in Rats vol.32, pp.4, 2003, https://doi.org/10.3746/jkfn.2003.32.4.603
  6. Effects of Monascus-fermented Angelica gigas Nakai on the Contents of Serum Lipid and Tissue Lipid Peroxidation in Alcohol Feeding Rats vol.23, pp.11, 2013, https://doi.org/10.5352/JLS.2013.23.11.1371
  7. Dietary Effects of Fermented Soybean Curd Residue (Biji) on Body Weight, Serum Lipid Profiles, and Antioxidation-Related Enzymes Activity of Mice Fed a High Fat Diet vol.42, pp.7, 2013, https://doi.org/10.3746/jkfn.2013.42.7.1043
  8. 홍삼박으로부터 항산화 활성 산성다당체 분리 정제 및 구조 분석 vol.34, pp.4, 2003, https://doi.org/10.12925/jkocs.2017.34.4.915