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An Application of the Impedance Boundary Condition to Microwave
Cavity Analysis using Vector Finite Element Method

Pan-Seok Shin*, Changyul Cheon** and Sheppard J. Salon***

Abstract - This paper presents an application of an impedance boundary condition to 3D vector finite
element analysis of a multi-port cylidrical microwave cavity using Snell’s law. Computing memory
benefits and computing time reduction are obtained from this method compared with the conventional
finite element method(FEM). To verify the method, a high permittivity scatterer in free space is ana-
lyzed and compared with the results of conventional (FEM). In addition, this method has been ana-
lyzed several types of cavities, including water load, to demonstrate the validity and accuracy of the

program.
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1. Introduction

The conventional impedance boundary condition (IBC)
has become extensively applied to radio frequency devices
and various electromagnetic problems, such as eddy cur-
rent, induction heating, and scattering[1-3]. The IBC states
that the ratio of the tangential component of the surface
electric field to the tangential magnetic field at the surface
of a part experiencing eddy current is a constant ratio, and
this constant is called the surface impedance. The IBC is an
approximate boundary condition that is applicable at the
surface of materials experiencing pronounced skin effect.
The use of the IBC allows the elimination of bodies made
of such materials from the field solution region at great
savings in computing cost. However, the IBC is an ap-
proximation that is applicable only under certain limited
conditions and is justified from Maxwell’s equation. Since
the IBC has become very important through its wide appli-
cation, S. R. Hoole [1] has validated the IBC using a labo-
ratory experiment and reviewed the limitations of the IBC
so that its proper use may be established.

N. Ida and S. Yuferev [4] have derived the approximate
boundary conditions for the tangential components of the
electric field and the normal component of the magnetic
field on the surface of a homogeneous body of finite con-
ductivity (conductor or lossy dielectric) for the transient
incident electromagnetic field. They have also introduced
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scale factors for basic variables in such a way that a small
parameter, proportional to the ratio of the penetration depth
and body’s characteristic size, appears in the dimensionless
Maxwell’s equations for the conducting region. They then
used the perturbation method.

S. M. Mimoune and his group [5] have presented a study
of 3D magneto-thermal finite element phenomena. The
(A,V-A) formulation using the IBC was applied to multiply
connected regions. From the exterior inductor voltage and
current density distribution, the impedance and the total
power of the induction heating devices are calculated. B.
Dumont and A. Gannoud [6] proposed an iterative method
to model an electromagnetic shaping of molten metal by
using the IBC with moving FEM mesh to improve the high
frequency configuration.

We present an IBC using Snell’s law (SIBC) to analyze a
multi-source microwave cavity. A finite element analysis
of a 3D microwave cavity including high dielectric load
such as water load or high water content load has suffered
from long computing time and large computer memory size
since the high dielectric constant require a huge number of
meshes. These difficulties are overcome by using a Vector
Finite Element Method (VFEM), which uses edge elements
and the SIBC. The wave equation is formulated by
Galerkin’s weighted residual FEM using 3D tetrahedral
edge element [7]. In addition, the parallelized QMR
method [8] is employed to solve the system matrix of the
proposed models. In the paper, several example models in-
cluding a scatterer and a cylindrical cavity are provided to
verify the formulation of the FEM program. Also, a two-
port rectangular cavity model is designed, manufactured,
and tested to compare with the calculated and measured
results.
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2. Numerical Formulation
2.1 Three-Dimensional FEM for Wave Equation

A vector wave equation for the electric field, E, is
derived from the Maxwell Equation:

Vx(u,xE) —kie, E=0 (1
AxE = 0 )

where k; is the propagation constant (ko = @ /&, 1, ),  is

angular frequency, [, is a relative permeability, €, is a
dielectric constant, and all the walls of the cavity are
assumed to be perfect conductors. The boundary conditions
often encountered are those to be applied at electrically
conducted surfaces as in Eq. (2).

Fig. 1 A tetrahedral edge element for FE formulation

Fig. 1 shows a tetrahedral edge element to discretize the
microwave cavity and waveguide. A vector basis function
can be derived using the 3D interpolation function, L,

a,+bx+cy+d:z
L= —— 3)

where a;, b, ¢;, and dj are coefficients determined by the
coordinate of the related nodes, subscript / is the node
number (1,2,3,4), and V is the volume of the element.
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Ci = Xial X2 Xie3 (6)
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Using L;, the vector basis function, V,, can be formulated
as

N, =L,VL, - L, VL, ®)

where i is the number of the edge element and where i/ is
the starting node and i2 the ending node number of the j-th
edge. In the element, the electric field vector, E, is

E:Z():N, E,, 9

i=]

where Ei=jE~df, .

The FEM formulation of the vector wave equation
(Eq.(1)) is performed by using Galerkin’s Weighted
Residual method as follows:

'[ﬁ,.[vx[ivxé)—kg g,,E]dQ:O (10)
9]

where 1\7, is used as a weighting function and Q is the 3D

problem domain. Using the vector identity and integral
operation, Eq.(10) can be modified as,

| [—I—(Vxﬁ,)-(VxE)—koze,,N,-E“}dQ
Q| u,

¥

VxE

+er,-(ﬁx )dT =0

r

where 7 is the outward normal unit vector of boundary
and I'is the surface boundary. The boundary integration
over the conducting wall becomes zero by choosing the
appropriate  basis function. When considering scatterer in
free space, the boundary integral is treated using the
conventional absorbing boundary condition (ABC). An
clectric field on the boundary surface of the port is
expressed, with the assumption that only TEmo modes exist,
as
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E(x,y,z)=E™ + E™
(12)

= P E,sin(Z)e ™ + 5 RE, sin(®) ek
a a

where E, denotes the magnitude of the incident wave and R
denotes the reflection coefficient. The boundary integral in
Eq.(11) can be treated using the following equation.

Ax(AxE)=-E,
AXV xE = — jKE™ + jkE"™

L L (13)
= JKE - 2jk E™ =~y ax(AxE)+ U™

where y=jk, U™ =-2jkE™.
Using Eq.(13) and a vector identity, the surface integral
of Eq.(11) can be rewritten as

VxE

)dr

. L#Lr b Gx ¥, Y E)+ N, -0 Jar.

J' N, -(Ax
r

The first term of Eq.(11) can be discretized using Eq.(9)
and Eq.(10). Thus, the coefficient matrix equation is

[K1+[M]1+[BI{E}={F} (15)

where the elements of the coefficient matrix are

b =[O e} v e (16)
ety
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b, :J'r[(—%)(ﬁxNi")(rAszf)dF (18)
i,
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7 (19
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Using the vector identities, k; , my, and b; can be
calculated as functions of the coefficients of the
interpolation function, L, .

ky=———chid5—-djicH)(cdSy —dS eéy)
if 324 ’u; [ il %2 1%i2 J1L %2 Y52
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where coef (i, j) = A,/432(V,)2’ =J (24)
A 121607y, i=j.

2.2 Impedance Boundary Condition

When a microwave cavity is analyzed by the FEM, at
least ten elements are required on a wavelength. Especially
in high permittivity or high permeability materials, a huge
number of elements is required to solve the field problem
properly because the wavelength becomes very short.
These kinds of problems can be solved using the IBC.

The basic concept of the IBC [1] is that an electric and
magnetic field parallel to a boundary is unaffected by the
other EM field and is determined by only its own material
properity on the boundary. The SIBC method is applied
under the assumptions that the skin depth of the material is
small, the boundary is smooth, and the incident wave right
inside the high dielectric medium is normal to the
boundary plane by Snell’s law. These assumptions can be
properly applied to the water load or the high water
contents load. In the modified impedance boundary
condition (MIBC) an incident angle of the wave and its
curvature of the boundary are considered to calculate the
field.

On the boundary, the electric and magnetic field parallel
to the boundary is continuous and the ratio of the electric
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field to the magnetic field in air bounded by a high permit-
tivity material (e.g. a water load) is the same as the intrin-
sic impedance of the load. The relationship can be ex-
pressed by

ix E=-7 ix(ixH) 25)

E (26)

Axnx E= Z‘,';IXVX -
JOH

where 7 is the unit vector toward the water load and Z, is
the impedance of the water load. Using Eqs.(25) and (26),
the boundary integral term of Eq.(11) can be rewritten as

I N,-(ﬁxVXE)dF
r H,

IN[J;)_AI (7 x 8)- (5 ¢ ,;—)}m

5

@7

3. Examples of Applications
3.1 Verification of 3D FEM Program

For verifying the 3D FEM formulation of Eq.(11), a one-
port cavity is analyzed as shown in Fig. 2. The cavity size
is 405x450x55 mm’ with a port, whose width is 109
mm. TE,, mode (f = 2.45 GHz) is imposed on the bound-
ary surface of the waveguide port, and its electric field dis-
tribution is calculated as shown in Fig. 2. The electric field
is well distributed as expected.

In addition, a two-port microwave cavity (rectangular
type) is designed and manufactured as a test model to ver-
ify the 3D FE program. The final model is determined after
calculating the power dissipation as a function of the port
position. There are three variables; x, y, and the cavity
width as shown in Fig. 3(a). The maximum point of power
dissipation occurs at x = 0 and y = 13.1 mm. Also, the
minimum reflection and the maximum power dissipation
occurs at a width of 35.5 mm. The final dimension of the
model is fixed as 390x360x 55 mm® and the load size is

210x210x 55 mm’. Fig. 3(b) shows an electric field (‘E]2 )
pattern of the mode! TE; mode (f = 2.45 GHz) is imposed
on the boundary surface of the wave guide port and its
|EI2 is calculated.

The scattering parameters are also calculated by using
the two-port network method to compare with the meas-
ured values. For example, S;; can be derived from the
product of H and the incident plane:

e
>

_ /jéL

e
(a) One-port microwave cavity model(405x450x 55 mm®)

|

(b) Electric field distributio of the cavity at z = 27.5 mm

Fig. 2 One-port microwave cavity model to verify the 3D
edge element FE formulation

- inc
fi-5=—kE sin (e Ref’“). (28)
wu a

The R (= S),) can be calculated by using Eq.(21) to put
zero into z because the incident plane is the reference of the
two-port network. The calculated parameters are compared
with the measured data as shown in Table 1, which is a
fairly good agreement within the tolerance of 5%.
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(a) Initial Model of the two-port cavity
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(b) Electric field distribution
Fig. 3 Electric field (‘E'z) contour lines of two-port Mi-

crowave cavity model (cavity size =
390x 360 mm”, load size = 210 x210 mm?)

Table 1 Comparison of S-parameters for the 2-port cavity

model
S-parameters Calculated  Measured

Su amplitude 0.9121 0.9051
phase 59.85 62.83

Ss amplitude 0.4981 0.5145
phase 96.24 99.10

S, amplitude 0.8921 0.8762
phase -32.52 -34.69

Sz amplitude 0.5020 0.5019
phase 96.28 98.23

3.2 Examples of IBC Applications

A cylindrical microwave cavity with a waveguide is de-
signed and simulated for verifying the proposed program
with the IBC. The simulation results of the model are com-
pared with the results of the conventional FEM without
SIBC. As shown in Fig. 4(a), the radius of the cavity model
is 258 mm and the radius of the water load (g, = 80 ) is 100
mm. The width of the waveguide is 86.36 mm and the
length is 283.5 mm.

As shown in the figures, the two results are almost the
same. It means that the incident angle cannot affect the im-
pedance on the boundary. The number of edge elements is
13489 and the number of nodes is 4596 for the SIBC case.
As shown in Table 2, computing memory size and comput-
ing time for the microwave cavity are reduced by nearly
one half compared with the conventional method. TEj,
mode (f = 2.45 GHz) is imposed on the boundary surface
of the waveguide port and its E field distribution is ana-
lyzed as shown in Figs. 4(b) and 4(c). The dissipated
power, Py, of the cavity is calculated using Eq.(29) and
described in Table 2.

Pdl.\’ :%Rej (EX]:][)ndr
S (29)
=—Rej Ly (hxHy-(hxH ydr
2 r we

Table 2 Comparison of Computing Memory and Time for

the Cavity Model
Variables Conventional FEM SIBC Method
No. of Nodes 9.742 4.596
No. of Elements 17,567 8.893
No. of Edges 26.455 13,489
CPU Time 1783 s 726's
Incident Power 1.7¢° W 1.8¢° W
TEml mode

(b) Without SIBC

(c) With SIBC
Fig. 4 Electric field distributions for cylindrical MW cavity
and waveguide model

3.3 Three-Port Cylindrical Microwave Cavity

A three-port cylindrical microwave cavity, e.g., a clothes
dryer, is simulated to analyze its electromagnetic field us-
ing the FEM program with SIBC. Fig. 5 shows the 3D
model of the three-port cylindrical cavity. The radius of the
cavity is 516 mm and its length is 372 mm. The distance
between the two feeding ports is 93 mm, which is deter-
mined by the results of the power dissipation calculation
for the simulation model. Fig. 6 shows the 3D tetrahedral
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meshes of the model. The number of nodes and edges are
39,249 and 245,779 for the whole model with the proposed
3D FEM. The system matrix is solved by the parallelized
QMR method by using HPC160, and the computing time is
about 59 hours. Fig. 7(a) shows the E-field distribution of
the model at X = 80 mm in the YZ plane, which is solved
by the conventional 3D FEM without SIBC and Fig. 7 (b)
shows the electric field distribution of the model at ¥ = 0
mm in the ZX plane. Fig. 7(c) shows the electric-field dis-
tribution of the model at Z = 80 mm in the XY plane with-
out SIBC.

§
!
P

Fig. 5 3D simulation model of the three-port cylindrical
cavity clothes dryer

Fig. 6 Power dissipation of the test mode! as a function of
port distance

(a) Electric field in ZY plane at X = 80 mm (without SIBC)

21

(b) Electric field in ZX plane at ¥ = 0 mm (without SIBC)

(c) Electric field in XY plane at Z = 80 mm

Fig. 7 Electric field distribution of the three-port micro-
wave clothes dryer simulation model

On the other hand, the numbers of meshes for the SIBC
case are dependent upon the size of the applied impedance
boundary. When a cylindrical water load is inserted in the
center of the cavity and the SIBC is applied on the bound-
ary, the number of edges is reduced to 197,862. Also the
computing time is reduced by about 18%.

4. Conclusion

This paper proposes an application of an IBC to a 3D
vector finite element analysis of a multi-port microwave
cavity using Snell’s law. The wave equation is formulated
using a tetrahedral edge element, and the IBC with Snell’s
law (SIBC) is imposed on the high permittivity material.
For verifying the program, a scatterer and one and two-port
microwave cavities are analyzed by the method as case
studies. In addition, a three-port cylindrical microwave
cavity is designed and analyzed by the proposed program.
The calculated results are in good agreement with the test
results. In addition, computing memory and computing
time reductions are gained from this method compared
with the FEM without SIBC.

Consequently, the proposed program can be a very use-
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ful tool for designing and analyzing a multi-port micro-
wave cavity.
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