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A Neutral-Voltage-Compensated Sensorless Control of
Brushless DC Motor

Chang-hee Won*, Joong-Ho Song**, Ick Choy*** and Myotaeg Lim****

Abstract - This paper presents a new rotor position estimation method for brushless DC motors. The
estimation error of the rotor position clearly provokes the phase shift angle misaligned between the
phase current and the back-EMF waveforms, which causes torque ripple in brushless DC motor drives.
Such an estimation error can be reduced with the help of the proposed neutral- voltage-based estimation
method, which is structured as a closed loop observer. A neutral voltage appearing during the normal
mode of the inverter operation is found to be an observable and controllable measure, which can be used
for estimating an exact rotor position. This neutral voltage is obtained from the DC-link current, the
switching logic, and the motor speed values. The proposed algorithm, which can be easily implemented
by using a single DC-link current and the motor terminal voltage sensors, is verified by simulation and

experiment results.
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1. Introduction

Brushless DC motors with trapezoidal back-EMF wave-
forms require a rotor position sensor such as a hall sensor, or
a rotary encoder for the inverter commutation. The rotor
position sensor may raise the motor price, weaken the sys-
tem reliability, and worsen the power density of the drive
system. To overcome these problems, many studies have
attempted to obtain accurate rotor position information
without using a position sensor [1-4].

A sensorless control method, in which the timing points
of the inverter phase commutation are determined by proper
phase-shifting of the zero crossing points obtained from the
unexcited winding terminal voltage, is reported to be sensi-
tive to the frequency characteristics of the phase shifter over
a wide speed range [1-3]. A low-cost sensorless control to
reduce the number of sensing circuit components of the
motor terminal voltage is presented [3]. A self-tuning algo-
rithm of the commutation point is based on searching for a
certain control variable to draw the minimum stator current
required to produce a certain load torque [4].

This paper deals with a new estimation method based on
neutral voltage compensation. As sensing signals for sen-
sorless brushless DC motor drives, only DC link current and
motor terminal voltages are measured. Neutral voltage of
the inverter-motor system that is observed within the normal
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mode interval of the inverter operation results from the
out-of-phase shift between the phase current and the
back-EMF waveforms, which intrinsically reflects the es-
timation error of the rotor position. Combining with the
coarse rotor position estimator using the motor terminal
voltage, the neutral voltage compensation facilitates accu-
rate estimation of the rotor position. The proposed method
can offer a wide speed range and smooth torque generation
to position sensorless brushless DC motor drives based on
the motor terminal voltage measurement.

2. System description

A basic configuration of trapezoidal brushless DC motor
drives with DC link current controlled is shown in Fig. 1,
where rotor position required to determine the commutation
timing points of the phase currents is basically estimated
from the motor terminal voltage signals. The back-EMF
signals, which produce the corresponding inverter commu-
tation signals, can ideally be derived from the motor ter-
minal voltages. In practice, however, several problems ap-
pear in the signal processing through the low pass filters that
are used to implement the 90° phase shift as the pure inte-
grators do. Accurate rotor position detection is reported to
be hardly obtained in this method.

The final goal for taking an accurate rotor position is to get
the 120° quasi-square waveform of the phase currents
feeding brushless DC motor completely in phase with the
120° flat top waveform of the back-EMF of the motor. This
achievement can bring smoothed torque production to
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i motor torque ripples can be illustrated as shown in Fig. 2,

1 \ ] where the phase angle o is defined in Fig. 4. In this figure,
“ . @ Dmiess typical waveforms of ideal back-EMF, phase current, and

Bl . generated torque are illustrated according to the phase shift
\ angle between the phase current and the back-EMF. Figs. 2
‘T and 4 show that the waveforms of the torque ripple depend
i ¢ i on the phase shift of the phase difference and that the mag-
1, == Beret . .
B a6 az nitude of the ripple torque component becomes larger than
that of the commutation torque ripple. In addition, the phase
P . Yo difference error between the phase current and the
current sensor back-EMF is shown to need suppressing.
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Fig. 1 i figurati brushl dri . . .
ig- 1 Basic configuration of brushless DC motor drives As described in the preceding section, finding an ob-

servable measure is necessary to reflect the phase shift angle
between the phase current and the back-EMF. As a good
candidate of the observable measure, a neutral voltage ap-
pearing during the normal mode operation of the inverter is
developed in this section. For convenience’s sake, let us
take a look at only one commutation mode of the inverter
operation. In Fig. 3, the inverter switches Q1 and Q6 operate
in the PWM mode and then the commutation mode, with Q6
outgoing and Q2 incoming.

In the normal mode, the phase voltages can be expressed

time [sec) as equations (1) and (2) and the neutral voltage can be cal-
(a)a=0° culated by equation (3), considering i, = | iy, i = —| iyl.

torque [Nm)

time [sec] i

(b) leading a (a) normal mode
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(c) lagging o Fig. 3 PWM operation of the inverter
Fig. 2 Influences of the rotor position estimation error
v, . di,
brushless DC motor drives. In the position sensorless sys- V,= 7‘5 =Ri,+L—*+e, +v, (h

tem, the rotor position estimation error’s influences on the
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Here, V, represents DC link voltage, V., V, and v, rep-
resent terminal phase voltage, e,, e,, and e. are phase

back-EMF, R is winding resistance, L is winding inductance.

ia, ip,and i. represent phase current, i, is the DC link current,
and V,, is the neutral voltage.

Next, in the commutation mode, the respective phase volt-
ages and neutral voltage are given by

Va:Vd-S:Rit,+Ldl"+€(,+V,w )
2 dt
1% di
V,=—L=Riy+ L5t +v >
T R A ®
, :
K:_Ed'S:Ri‘.JrLd"'+eL.+vm) ©)

V, e +e +e,
vnu e — (7)
6 3

3.1 Occurrence of neutral voltage

The phase shift angle between the phase current and the
back-EMF is defined as shown in Fig. 4, where the angle o
describes the phase shift of the phase current with respect to
the developed back-EMF. Along with the phase shift defi-
nition, the resultant neutral voltage can be plotted as shown
in Fig. 5. This figure illustrates that narrow pulsed wave-
forms are the neutral voltages produced in the commutation
intervals, whereas ramp-up or ramp-down waveforms rep-
resent the neutral voltages generated during the normal

/6 w2 Smi6

l .3
A 7 .

leading o lagging o
(o <0) a=0 (o> 0)
Fig. 4 Definition of the phase shift angle

Fig. 5 Neutral voltage with respect to the phase shift angle

mode. Note that the phase shift angle error also makes the
corresponding neutral voltage component.

3.2 Estimation of neutral voltage

From the results in the preceding sections, the neutral
voltage appearing in the normal modes can be said to attract
attention for the rotor position estimation. The neutral
voltage in the normal mode is described as shown in equa-
tion (3). However, this equation cannot be utilized directly
to obtain the value since the back-EMF terms involved
cannot be measured practically. Revisiting the respective
voltage equations is necessary to develop a routine for ob-
taining the neutral voltage information. In case the phase
shift shows a leading angle, use equation (2), i, = —| i,/], and
e, = —E and assume that the estimated neutral voltage
equation is expressed as

e

__V : dli,|
——'T‘S+RIIJI+L—;h—+E. (8)

V4

This equation is confirmed to imply the practical neutral
voltage of equation (3). The confirmation is explained be-
low; the following equation can be arranged by using i, = i,
and equation (1).

R{i‘,|+Ldll"]:%-8—eu—vm, )
_VL,-S—eu+eh

2

Inserting equations (3) and (9) into (8) provides a resul-
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tant neutral voltage estimation that is the same as that in
equation (3).

When the neutral voltage estimation of equation (8) is
taken as an observable and controllable variable, the
waveform of the estimation with respect to the phase shift
angle is shown in Fig. 6. This figure illustrates that the es-
timated neutral voltage in the normal mode, which is ob-
tained by equation (8), reflects faithfully the normal mode
component of the actual neutral voltage.
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Fig. 6 Estimated and actual neutral voltages

3.3 Compensation of neutral voltage

The neutral voltage in the normal mode interval described
in the preceding section can be eliminated by a proper
compensation scheme. The rotor position can be estimated
accurately by a neutral voltage compensation loop. The ro-
tor position estimation loop is shown in Fig. 7 and is basi-
cally accomplished by compensating for the neutral voltage
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Fig. 7 Rotor position estimation based on neutral voltage
compensation

occurring in the normal mode operation. Looking into the
rotor position estimation scheme, the neutral voltage com-
pensation loop ¢, is additionally applied to the basic ter-

minal voltage processing loop 4, .

4. Simulations and Experiments

An overall control block diagram is presented in Fig. 8,
which includes the rotor position estimation scheme of Fig.
7. A brushless DC motor with nameplate data of 4 poles,
40V, 45W, and 1500 rpm is used in this paper. To imple-
ment the proposed estimation algorithm, dSpace DS1102 is
employed in the controller set-up, as shown in Fig. 9.

To confirm whether the rotor position correction directly
reflects the phase shift correction between the phase current
and the back-EMF, simulation results are obtained and
shown in Fig. 10. In this case, the motor operates at 500 rpm
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Fig. 9 Experimental set-up
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Fig. 10 Responses of rotor position error estimated at 500 rpm
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Fig. 11 Responses of rotor position error estimated at 2000 rpm
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Fig. 12 Experimental results of rotor position error esti-
mated; (from top to bottom) motor speed w, :

1000rpm/div , position error 6, : 18%div, com-

pensating signal §,:18°/div; time: 4 sec/div

and the corresponding phase shift error of about -20° ap-
pears in the leading angle mode. In addition, the phase shift
error correction is clearly accomplished in leading shift. Fig.
11 shows the capability of the phase shift correction when
the motor operates at 2000 rpm. This result confirms cor-
rection of the approximately 7° phase error in the lagging
shift mode as well.

Fig. 12 shows the results of several experiments per-
formed at the operation speed of 500, 1000, and 2000 rpm.
Fig. 12(a) shows that the rotor position error of about —18°
(leading angle) converges steadily to zero after the proposed
compensation algorithm (§,) starts operating at 500 rpm.

Fig. 12(b) shows that the position error of —5° is reduced to
zero level when the algorithm operates at 1000 rpm. Fig.
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12(c) shows that the position error of 10°(lagging angle) is
reduced to the zero level when the algorithm is employed at
2000 rpm. Note that in this experimental result the rotor
position error correction is completely accomplished
through the effective suppression of the undesirable neutral
voltage developed during the normal mode interval of the
inverter operation.

5. Conclusion

A new position sensorless control method for brushless
DC motor drives is proposed with the basic idea of ex-
tracting and compensating for the neutral voltage occurring
during the normal mode interval of the inverter operation.
This neutral voltage shows property that it shows no ap-
pearance when the phase current waveforms are in phase
with the respective back-EMF waveforms, whereas the
phase-shift- proportional occurrence when out of phase.
Based on the results obtained by this neutral voltage com-
pensation, the newly proposed control method offers a wide
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