DOI QR코드

DOI QR Code

Microstructure and Magnetic Properties of Nanocomposite Sm2Fe15Ga2Cx/α-Fe Permanent Magnets

  • Cheng, Zhao-hua (State Key Lab. Of Magnetism, Institute of Physics, Chinese Academy of Sciences)
  • Published : 2003.03.01

Abstract

In our previous work, microstructure and magnetic properties of two-phase exchange-coupled $Sm_2Fe_{15}Ga_2C_{x}$/$\alpha$-Fe nanocomposites have been investigated by means of x-ray diffraction, transmission electron microscopy and magnetization measurement. It was found the exchange coupling between the magnetically hard phase $Sm_2Fe_{15}Ga_2C_{x}$ and the magnetically soft one ${\alpha}$-Fe results in an enhancement of the remanence. The sizes of crystallites of both phases are, however much larger than the Block domain-wall width of the magnetically hard phase. This microstructure gives rise to a concave demagnetization curve and consequently reduces the maximum energy Product. In order to improve their magnetic properties, a few Percent of Zr, which may be effective to refine the microstructure through rapid quenching, was introduced into the nanocomposites. The addition of Zr was found to improve the magnetic properties significantly, Under optimum heat-treatment conditions, the remanence, coercivity and maximum energy Product increase from 0.65 T, 0.48 T and 50 kJ/$m^{3}$ for the Zr-free sample to 0.72 T, 0.77 T and 71.6 kJ/$m^{3}$ for the 1 at.% Zr-containing one, respectively, The improvements of magnetic properties are due to the refinement of microstructure by the addition of Zr.

Keywords

References

  1. J. Magn. Magn. Mater. v.87 J. M. D. Coey;H. Sun https://doi.org/10.1016/0304-8853(90)90756-G
  2. J. Magn. Magn. Mater. v.86 X. P. Zhong;R. J. Radwanski;F. R. de Boer;T. H. Jacobs;K. H. J. Buschow https://doi.org/10.1016/0304-8853(90)90141-C
  3. Appl. Phys. Lett. v.63 B. G. Shen;L. S. Kong;F. W. Wang;L. Cao https://doi.org/10.1063/1.110506
  4. J. Phys.: Condens. Matter. v.6 Z. H. Cheng;B. G. Shen;F.W. Wang;J.X.Zhang;H.Y. Gong;J. G. Zhao https://doi.org/10.1088/0953-8984/6/14/001
  5. J. Appl. Phys. v.77 B. G. Shen;B. Liang;F. W. Wang;Z. H. Cheng;H. Y. Gong;S. Y. Zhang;J. X. Zhang https://doi.org/10.1063/1.358729
  6. J. Alloys & Compounds v.227 B.G. Shen;L. S. Kong;H. Y. Gong;Z. H. Cheng;B. Liang;F. W. Wang https://doi.org/10.1016/0925-8388(95)01612-0
  7. J. Alloys & Compounds v.222 G. C. Hadjipanayis;Y. H. Zheng;A. S. Murthy;W. Gong;F. M. Yang https://doi.org/10.1016/0925-8388(94)04916-5
  8. J. Phys.: D: Appl. Phys. v.29 L. Cao;K. H. Muller;A. Handstein;W. Grunberger;V. Neu;L. Schultz https://doi.org/10.1088/0022-3727/29/1/041
  9. J. Magn. Magn. Mater. v.167 J. van Lier;M. Seeger;H. Kronmuller https://doi.org/10.1016/S0304-8853(96)00624-5
  10. J. Phys. (France) Colloq. v.49 R. Coehoom;D. B. de Mooij;J. P. W. B. Duchateau;K. H. J. Buschow
  11. Solid State Commun. v.74 B. G. Shen;L. Y. Yang;J. X. Zhang;B. X. Gu;T. S. Ning;F. Wo;J. G. Zhao;H. Q. Guo;W. S. Zhan https://doi.org/10.1016/0038-1098(90)90946-9
  12. J. Magn. Magn. Mater. v.128 A.Manaf;R. A. Buckley;H. A. Davies https://doi.org/10.1016/0304-8853(93)90475-H
  13. J. Magn. Magn. Mater. v.124 J. Ding;P. G. McCormick;R. Street https://doi.org/10.1016/0304-8853(93)90060-F
  14. IEEE Trans. Magn. v.27 E. F. Kneller;R. Hawing https://doi.org/10.1109/20.102931
  15. Phys. Rev. B v.49 T.Schrefl;J. Fidler;H. Kronmuller https://doi.org/10.1103/PhysRevB.49.6100
  16. Phys. Rev. B v.48 R. Skomski;J. M. D. Coey https://doi.org/10.1103/PhysRevB.48.15812
  17. J. Phys. D: Appl. Phys. v.29 E. H. Feutrill;P. G. McCormick;R. Street https://doi.org/10.1088/0022-3727/29/9/014
  18. Appl. Phys. Lett. v.72 Z. H. Cheng;J. X. Zhang;H. Q. Guo;J. van Lier;H. Kronmuller;B. G. Shen https://doi.org/10.1063/1.120939
  19. J. Appl. Phys. v.61 R. W. McCallum;A. M. Kadin;G. B. Clemente;J. E. Keem https://doi.org/10.1063/1.338706
  20. J. Magn. Magn. Mater. v.152 I. Panagiotopoulos;L. Withanawasam;G. C. Hadjipanayis https://doi.org/10.1016/0304-8853(95)00467-X