Optimization of \beta-mammanase Production from Bacillus subtilis JS-1.

\beta-Mannanase를 생산하는 Bacillus subtilis JS-1의 분리 및 효소 생산성

  • 임지수 (배재대학교 생명과학부) ;
  • 정진우 (배재대학교 생명과학부) ;
  • 이종수 (배재대학교 생명과학부) ;
  • 강대경 (이지바이오시스템 생물자원연구소) ;
  • 강하근 (이지바이오시스템 생물자원연구소)
  • Published : 2003.03.01

Abstract

A bacteria strain producing extracellular $\beta$-mannanase was isolated from soil and was identified as Bacillus subtilis by 16S rRNA sequence comparison and biochemical determinations. The optimum pH and temperature for the $\beta$-mannanase activity were 5.0 and 5.5$^{\circ}C$, respectively. The zymogram technique revealed a single protein band exhibiting $\beta$-mannanase activity from the culture supernatant. The molecular mass of the enzyme was estimated at approximately 130 kDa. The addition of 0.5% lactose or 0.5% locust bean gum to the LB medium caused to Increase significantly the $\beta$-mannanase productivity from Bacillus subtilis JS-1. The cells grown on LB medium supplemented with lactose produced maximal enzyme activity at the stationary phase. In contrast to this, the $\beta$-mannanase was induced at the logarithmic phase from the cells grown on LB medium supplemented with locust bean gum. The discrepancy in induction times suggests that $\beta$-mannanase was induced by different induction mechanisms depending on the carbon sources in Bacillus subtilis JS-1 .

토양으로부터 $\beta$-mannanase활성이 우수한 균주를 분리하여 형태학적, 생화학적 동정과정을 거쳐 Bacillus subtilis JS-1으로 동정하였다. 분리균이 생산하는 $\beta$-mannanase 효소의 최적활성은 55$^{\circ}C$와 pH 5.0이었다. 탄소원이 다른 배지에서 배양한 분리 균주의 상등액을 전기영동하여 효소활성을 관찰한 결과 탄소원에 상관없이 분자량 130kDa에 해당하는 단일 단백질만이 효소 활성을 나타내었다 Bacillus subtilis JS-1은 탄소원으로 lactose와 locust bean gum이 존재할 때 $\beta$-mannanase 생산성이 크게 증가하는 것으로 나타났으며, lactose와 locust bean gum이 각각 0.5 % 존재할 때 배양 상등액의 $\beta$-mannanase 활성은 30U/ml과 45U/ml로 탄소원이 없는 대조구에 비해 최대 18배 정도 생산성이 증가하였다. 배지에 locust bean gum을 첨가하였을 때 효소 생산성 뿐만 아니라 균체의 성장도 함께 증가하는 것으로 보아 분리균주는 locust bean gum을 분해하여 에너지원으로 이용하는 것으로 판단된다

Keywords

References

  1. Agric. Biol. Chem. v.52 Characterization o three β-mannanase of an alkalophilic Bacillus sp. Akino,T.;Nakamura,N.;Horikoshi,K. https://doi.org/10.1271/bbb1961.52.773
  2. J. Appl. Bacteriol. v.68 Hemicellulases of Bacillus species: preliminary comparative studies on production and properties of mannanase and galactanase Araujo, A.;O. P. Ward. https://doi.org/10.1111/j.1365-2672.1990.tb02572.x
  3. Biochem. J. v.290 β-Mannanase of Sreptomyces lividans 66: cloning and DNA sequencing of the manA gene and characterization of the enzyme Arcand, N.;D. Kluepfel;F. W. Paradis;R. Morosoli;F. Sharek.
  4. Biochemistry v.35 Mannanase A from Pseudomonas fluoresence subsp. cellulosa is a retaining glycosyl hydrolase in which E12 and E320 are the putative catalytic residues Bolam, D. N.;N. Hughesw;R. Virden;J. H. Lakery;G. P. Hazlewood;B. Henrissat;K. L. Braithwaite;H. J. Gilbert. https://doi.org/10.1021/bi961866d
  5. Bergy's Manual of Systematic Bacteriology v.2 Genus Bacillus Claus, D.;R. C. W. Berkeley;Sneath, P. H. A.(ed.)N. S. Mair(ed.);M. E. Sharpe(ed.);J. G. Holt(ed.)
  6. Appl. Environ. Microbiol v.64 Gene cloning, DNA sequencing, and expression on thermostable β-mannanase from Bacillus stearothermophilus Ethier,N.;G.Talbot;J.Sygusch
  7. Enzyme Microb. Technol. v.18 Multiple froms of β-mannanase from Bacillus sp. KK01 Hossain, M. Z.;J. Abe;S. Hizukuri. https://doi.org/10.1016/0141-0229(95)00071-2
  8. Poult. Sci. v.78 Effects of β-mannanase in corn-soybean meal diets on laying hen performance Jackson, M. E.;D. W. Fodge;H. Y. Hsiao.
  9. Nature v.227 Cleaveage of structural protein during the assembly of the head of bacteriophage T4 Laemmli,U.K. https://doi.org/10.1038/227680a0
  10. Biochim. Biophys. Acta v.1243 Cloning and sequencing of β-mannanase gene from Bacillus subtilis NM-39 Mendoza,N.S.;M.Arai;K.Sugimoto;M.Ueda;T.Kawaguchi;L.M.Joson https://doi.org/10.1016/0304-4165(95)00011-Y
  11. Anal. Chem. v.31 Use of dinitrosalisylic acid reagent for determination of reducing sugar Miller, G. L. https://doi.org/10.1021/ac60147a030
  12. J. Ferment. Bioeng. v.76 Purification and properties of expracellular β-mannanase produced by Enterococcus cassliflavus F12121 isolated from decayed knojac Oda, Y.;T. Komaki;K. Tonomura. https://doi.org/10.1016/0922-338X(93)90045-A
  13. Poult. Sci. v.81 Effect of mannan-endo-1, 4-β-mannosi-dase on the growth performance of turkeys fed diets containing 44 and 48% crude protein soybean meals Odetallah,N.H.;P.R.Ferket;J.L.Grimes;J.L.McNaughton
  14. Kor. J. Appl. Microbiol. Biotechnol. v.29 Cloning of β-mannanase gene from Aeromonas sp. in E. coli Park, B. H.;D. K. Kang;H. K. Kim
  15. Appl. Environ. Microbiol v.65 Mannan-degrading enzymes from Cellulomonas fumi Stoll,D.;H.Stalbrand;R.A.J.Warren
  16. Appl. Environ. Microbiol v.66 A gene encoding a novel multiodomain β-mannanase from Caldibacillus cellulovorans and action of the recombinant enzyme on kraft pulp Sunna,A.;M.D.Gibbs;W.J.Chin;P.J.Nelson;P.L.Bergquist https://doi.org/10.1128/AEM.66.2.664-670.2000
  17. Appl. Environ. Microbiol v.56 Purification and characterization of thermostable β-mannanase and α-galactosidase from Bacillus stearothermophilus Talbot,G.;J.Sygusch
  18. J. Ferment. Bioeng. v.78 Cloning, DNA sequencing, and expression of the β-mannanase gene from a marine bacterium, Vibrio sp. strain MA-138 Tamuru, Y.;T. Araki;T. Morishita;T. Kimura;K. Sakka;K. Ohmiya. https://doi.org/10.1016/0922-338X(94)90291-7
  19. Appl. Microbiol. Biotechnol v.52 Production of halostable β-mannanase and β-mannosidase by strain NN, a new extremely halotolerant bacterium Waino,M.;K.Ingvorsen https://doi.org/10.1007/s002530051578