DOI QR코드

DOI QR Code

Fat Cell Formation and Obesity-Related Diseases

  • Kawada, Teruo (Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Project of Molecular Mechanisms for the Regulation of Energy Metabolism and Adipocyte Functions, Bio-Oriented Technology Research Advancement Institute)
  • Published : 2003.03.01

Abstract

Animals possess a highly sophisticated mechanism of storing energy in adipose tissue inside their bodies. However, in humans it has been clarified that adipocyte (fat cell), which composes the body fat (adipose) tissues, development and the extent of subsequent fat accumulation are closely associated with the occurrence and advancement of various common diseases (e.g., type-2 diabetes, coronary artery disease, and hypertension) resulting from obesity. Recent exciting progress in clinical and biochemical studies of adipocytes has rapidly clarified the functions of adipocytes and adipose tissue. Interesting findings are the function of white adipocytes as "secreting cells" and the molecular mechanism undelying adipocyte differentiation at the transcriptional level in relation to nuclear receptors. Consequently, the adipose tissue is being targeted for the prevention or treatment of many common diseases. In this review, I will focus on recent information on characteristics of adipocytes and the relationship between obesity and common obesity-related diseases. diseases.

Keywords

References

  1. MSNBC NEWS SERVICES. http://www.cbsnews.com/stories/2002/lO/ 09/health/main524900.shtml Oct. 8. 2002
  2. Manual for the Treatment of Obesity $2^{nd}$ ed. 2001. Y. Saitoed., in Japanese, Ishiyaku publishers, Inc. Tokyo
  3. Bray GA, Bouchard C, James WPT. 1998. Handbook ofobesity. Mercel Dekker, Inc., New York
  4. Brown Adipose Tissue. 1986. P. Trayhun. D. Nicholls. eds.,Edward Arnold London
  5. Ricquier D, Fleury C, Larose M, Sanchis D, Pecqueur C,Raimbault S, Gelly C, Vacher D, Cassard-Doulcier AM,Levi-Meyrueis C, Champigny O, Miroux B, Bouillaud F.1998. Contributions of studies on uncoupling proteins to research on metabolic diseases, Intern Med 245: 637-642
  6. Gura T. 1998. Uncoupling proteins provide new clue toobesity's causes. Science 280: 1369-1370 https://doi.org/10.1126/science.280.5368.1369
  7. Clapham JC, Arch JR, Chapman H, Haynes A, Lister C,Moore GB, Piercy V, Carter SA, Lehner I, Smith SA, BeeleyLJ, Godden RJ, Herrity N, Skehel M, Changani KK, Hock-ings PD, Reid DG, Squires SM, Hatcher J, Trail B, LatchamJ, Rastan S, Harper AJ, Cadenas S, Buckingham JA, BrandMD, Abuin A. 2000. Mice overexpressing human uncou-pling protein-3 in skeletal muscle are hyperphagic and lean.Nature 406: 415-418 https://doi.org/10.1038/35019082
  8. Greenwood MRC, Hirsh J. 1974. Postnatal development ofadipose tissue cellularity in the normal rat. J Lipid Res 15:474-483
  9. Cushman SW, Salans LB. 1978. Determination of adipose tissue cell size and number in the suspensions of isolated rat and human adipose cells. J Lipid Res 19: 269-273
  10. Bertrand HA, Lynd FT, Masoro EJ, Yu BP. 1980. Changes in adipose mass and cellularity through the adult life of ratfed ad libitum or a life-prolonging restricted diet. J Gerintol35: 827-835 https://doi.org/10.1093/geronj/35.6.827
  11. Oscai LB, Miller WC, Arnall DA, 1987. Effects of dietary sugar and of dietary fat on food intake and body fat contentin rats. Growth 51: 64-73
  12. Bertrand HA, Masaro EJ, Yu BP. 1978. Increasing adipocyte number as the basis for perirenal depot growth in adult rats.Science 201: 1234-1235 https://doi.org/10.1126/science.151328
  13. Sugihara H, Yonemitsu N, Miyabara S, Yun K. 1986. Pri-mary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties.Differentiation 31: 42-49 https://doi.org/10.1111/j.1432-0436.1986.tb00381.x
  14. Sugihara H, Toda S, Watanabe K, Manabe Y, Ideguchi K,Nakahara S, Tabata T, Kondo T, Kogure Y. 2002. Novel obesity criteria by cell biological classification. J Japan SocStudy of Obesity (in Japanese) 8: 125-130
  15. Kawada T, Aoki N, Sugimoto E. 1991. Regulation of preadipocyte proliferation and a growth factor, In Obesity.Dietary Facros and Control. Romsos DR, Himms-HagenJ, Suzuki M, eds. japan Scientific Society Press and Karger,Tokyo and Basel
  16. Aoki N, Kawada T, Urneyama T, Sugimoto E. 1990. Protein factor obtained from rat adipose tissue specifically permitsthe proliferation of the 3T3-L1 and 0b1771 cell lines.Biochem Biophys Res Commun 171: 905-912 https://doi.org/10.1016/0006-291X(90)91231-G
  17. Aoki N, Kawada T, Sugimoto E. 1993. Level of pre-adipocyte growth factor in rat adipose tissue which spe-cifically permits the proliferation of preadipocytes is affected by restricted energy intake. Obesity Res 1: 126-131 https://doi.org/10.1002/j.1550-8528.1993.tb00601.x
  18. Yamasaki M, Emoto H, Konishi M, Mikami T, Ohuchi H,Nakao K, Itoh N. 1999. FGF-10 is a growth factor for preadipocytes in white adipose tissue. Biochem Biophys Res Commun 258:109-112 https://doi.org/10.1006/bbrc.1999.0594
  19. Cornelius P, MacDougald A, Lane MD. 1994. Regulationof adipocyte development. Ann Rev Nutr 14: 99-129 https://doi.org/10.1146/annurev.nu.14.070194.000531
  20. Issemann I, Green S. 1990. Activation of a member of thesteroid hormone receptor superfamily by peroxisome prolif-erator. Nature 347: 645-650 https://doi.org/10.1038/347645a0
  21. Ren D, Collingwood TN, Rebar EJ, Wolffe AP, Camp HS.2002. PPARgamma knockdown by engineered transcription factors: exogenus PPAR $\gamma2$ but not PPAR $\gamma1$ reactivates adipogenesis. Genes Dev 16: 27-32 https://doi.org/10.1101/gad.953802
  22. Zhou J, Wilson K, Medh J. 2002 Genetic analysis of fournovel PPAR-gannma splice variants in monky macrophages. Biochem Biophys Res Commun 293: 274-283 https://doi.org/10.1016/S0006-291X(02)00138-9
  23. Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM. 1992. Convergence of 9-cis retinoic acid and peroxi-some proliferator signaling pathways through heterodimer formation of their receptors. Nature 358: 771 -774 https://doi.org/10.1038/358771a0
  24. Forman BM, Tontonoz P, Chen J. 1995. 15-deoxy-delta-12,14-prostaglandin J2 is a ligand for the adipocyte determi-nation factor PPAR $\gamma$ Cell 83: 803-812 https://doi.org/10.1016/0092-8674(95)90193-0
  25. Kliewer SA, Lenhard JM, Willson TM. 1995. A prosta-glandin J2 metabolite binds peroxisome proliferator-acti-vated receptor $\gamma$ and promotes adipocyte differentiation.Cell 83: 813-819 https://doi.org/10.1016/0092-8674(95)90194-9
  26. Takahashi N, Kawada T, Goto T, Yamamoto T, TaimatsuA, Matsui N, Kimura K, Saito M, Hosokawa M, MiyashitaK, Fushiki T. 2002. Dual action of isoprenols from herbal medicines on both PPAR $\gamma$ and PPAR $\alpha$ in 3T3-L1 adipo-cytes and HepG2 hepatocytes. FEBS letters 514: 315-322 https://doi.org/10.1016/S0014-5793(02)02390-6
  27. Yu K, Bayona W, Kallen CB, Harding HP, Ravera CP, McMahon G, Brown M, Lazar MA. 1995. Differential acti-vation of peroxisome proliferator-activated receptors by eicosanoids. J Biol Chem 270: 23975-23983 https://doi.org/10.1074/jbc.270.41.23975
  28. Kawada T, Kamei Y, Sugimoto E. 1996. The possibility ofactive form of vitamins A and D as suppressors on adipocytedevelopment via ligand-dependent transcriptional regulators.Int J Obesity 20: S52-S57
  29. Hiragun A, Sato M, Mitsui H. 1988. Preadipocyte differen-tiation in vitro: identification of a highly active adipogenicagent. J Cell Physiol 134: 124-130 https://doi.org/10.1002/jcp.1041340115
  30. Forman BM, Tontonoz P, Chen J. 1995. 15-deoxy-delta-12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR $\gamma$. Cell 83: 803-812 https://doi.org/10.1016/0092-8674(95)90193-0
  31. Kliewer SA, Lenhard JM, Willson TM. 1995. A prostaglan-din J2 metabolite binds peroxisome proliferator-activatedreceptor $\gamma$ and promotes adipocyte differentiation. Cell 83:813-819 https://doi.org/10.1016/0092-8674(95)90194-9
  32. Nagy L, Tontonoz P, Alvarez JA, Chen H, Evans RM. 1998.Oxidized LDL regulates macrophage gene expression throughligand activation PPAR $\gamma$. Cell 93: 229-240 https://doi.org/10.1016/S0092-8674(00)81574-3
  33. Hida Y, Kawada T, Kayahashi S, Ishihara T, Fushild T.1998. Counteraction of retinoic acid and 1,25-dihydroxy-vitamin D3 on up-regulation of adipocyte differentiationwith PPAR $\gamma$ ligand, an antidiabetic thiazolidinedione, in3T3-L1 cells. Life Sci 62: PL205-211 https://doi.org/10.1016/S0024-3205(98)00059-9
  34. Hu E, Kim JB, Starraf P, Spiegelman B. 1996. Inhibitionof adipogenesis through MAP kinase-mediated phosphoryl-ation of PPAR $\gamma$. Science 274: 2100-2103 https://doi.org/10.1126/science.274.5295.2100
  35. Beamer BA, Yen C-J, Anderson RE, Muller D, Elahi D,Cheskin LJ, Andres R, Roth J, Shuldiner AR. 1998. Asso-ciation of the Pro12A1a variant in the peroxisome prolif-erator-activated receptor-gamma2 gene with obesity in twoCaucasian populations. Diabetes 47: 1806-1808 https://doi.org/10.2337/diabetes.47.11.1806
  36. Ristow M, Muller-Wieland D, Pfeiffer A, Krone W, KahnCR. 1998. Obesity associated with a mutation in a geneticregulator of adipocyte differentiation. N Eng J Med 339:953-959 https://doi.org/10.1056/NEJM199810013391403
  37. Barroso I, Gumell M, Crowley VE, Aqostini M, SchwabeJW, Soos MA, Maslen GL, Williams TD, Lewis H, SchaferAJ, Chatterjee VK, O'Rahilly S. 1999. Dominant negative mutations in human PPAR gamma associated with severeinsulin resistance, diabetes mellitus and hypertension. Nature402: 880-883 https://doi.org/10.1038/47254
  38. Takahashi N, Kawada T, Yamamoto T, Goto T, TaimatsuA, Aoki N, Kawasaki H, Taira K, Yokoyama K-K, KameiY, Fushiki T. 2002. Overexpression and ribozyme-mediatedtargeting of transcriptional coactivators CREB-binding pro-tein and p300 revealed their indispensable roles in adipocytedifferentiation through the regulation of peroxisome prolifer-ator-activated receptor $\gamma\;.$ J Biol Chem 277: 16906-16912 https://doi.org/10.1074/jbc.M200585200
  39. Shimomura I, Funahashi T, Takahashi M, Matsuzawa Y.1996. Enhanced expression of PAI-l in visceral fat: Possiblecontributor to vascular disease in obesity. Nat Med 2: 800-803 https://doi.org/10.1038/nm0796-800
  40. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. 1997. Protection from obesity-induced insulin resistance inmice lacking TNF-alpha function. Nature 389: 610-614 https://doi.org/10.1038/39335
  41. Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y,Hansen BC, Matsuzawa Y. 2001. Circulating concentrationsof the adipocyte protein adiponectin are decreased in parallelwith reduced insulin sensitivity during the progression totype 2 diabetes in rhesus monkeys. Diabetes 50: 1126-1133 https://doi.org/10.2337/diabetes.50.5.1126
  42. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N,Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova 0, Vinson C, ReitmanML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K,Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. 2001. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. NatMed 7: 941-946
  43. Kawada T. 1998. PPAR-CBP and adipocyte differentiationDiabetes J (in Japanese) 26: 1-9

Cited by

  1. Chlorella Methanol Extract Reduces Lipid Accumulation in and Increases the Number of Apoptotic 3T3-L1 Cells vol.1171, pp.1, 2009, https://doi.org/10.1111/j.1749-6632.2009.04895.x