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GL,— DECOMPOSITION OF
THE SCHUR COMPLEX S, (A%p)

Eun J. CHol, Young H. Kim,
Hyouna J. Ko, AND SEOUNG J. WON

ABSTRACT. In this paper we construct a natural filtration associ-
ated to the plethysm S.(A%p) over arbitrary commutative ring R.
Let ¢ : G — F be a morphism of finite free R—modules. We
construct the natural filtration of S,(A%) as a GL(F) x GL(G)—
complex such that its associated graded complex is > reqar Loy,

where Q- is a set of partitions such that |A| = r and 2\ is a par-
tition of which i-th term is 2);. Specializing our result, we obtain
the filtrations of SY,‘(/\QF) and D, (D2G).

1. Introduction

Akin, Buchsbaum, Weyman [3] have introduced and studied the Schur
and Weyl modules parametrized by Young diagrams, which turn out to
be the natural generalizations to commutative rings of the constructions
of the classical representations of the general linear group given by L.
Schur [14] and H. Weyl [15], respectively. In fact, the more general
notion of Schur complexes of a complex in the category of finitely gener-
ated projective modules is defined; the Schur and Weyl modules result
as special cases of the Schur complexes, whose usefulness is abundant.
For instance, Schur complexes play central roles in the resolutions of
determinantal and pfaffian ideals [3], [7] and in the characteristic-free
representation theory of the gencral linear group [1], [2], [8]. This forces
us to further study Schur complexes. One way to study Schur complexes
is to look for complex-theoretic versions of classical character relations
for the general linear group. The formal character of the Schur module
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is a Schur function. D. E. Littlewood [10], [11] introduced plethysm as
an operation on symmetric functions. So we have plethysm on Schur
and Weyl modules. Let R be a commutative ring with identity and let
¢ : G —> F be a morphism of finitely generated free R-modules. We
denote by AF, SF and DF, the exterior, the symmetric, and the divided
power algebra of F', respectively. Over the last decade or so, plethysms
such as S(S2F), S(A?F), S,FRL\F, N"FQK\F, and S,p® Ly have
been studied mostly in connection with invariant theory, resolutions of
determinantal ideals, and the characteristic-free representation theory
of the general linear group [5], [8], [9], [4], [13].

The purpose of this paper is to provide the natural filtration associ-
ated to the plethysm S, (A%p) as a GL(F) x GL(G)-complex such that
its associated graded complex is

Z Loy

AeQ,

Section 2 covers the basic definitions and some of the important prop-
erties utilized in the main body of the paper. In Section 3 we construct a
natural filtration of S,.(A%2p). And as Corollaries, we obtain the natural
filtrations of S.(A%2F) and D, (D2G) easily.

2. Preliminaries

In this section, we review some of the basic facts and notations that
will be used throughout. Therefore all proofs are omitted. As for the
proofs of Theorems, we refer to Akin, Buchsbaum, and Weyman [2],
Hashimoto and Kurano [7], and Macdonald’s book [12]. Throughout
this chapter, R is a commutative ring and ¢ : G — F' is an R-module
homomorphism between free R-modules of rank n and m, respectively.
We will denote by N(resp. Ny ) the set of natural numbers (resp. non-
negative integers ) and by Q1 the set of sequence of elements of N of finite
support. For any elements A and p of Q7 and k € Ny, we define A\ +
to be (A1 + g1, A2 + p2, - -+ ) and k- A to be the sequence (kA1, kAo, -+).

DEFINITION 2.1. For any A = (A1, Ag,---) € 97, the number of
nonzero terms of A is called the length of A. The weight of A, denoted
by [A], is the sum > X;. We put Q7 = {A e QF| |A\|=n}, @~ = {\ ¢
QFYi e N X\, > A1), and Q7 = QF N Q™. We call an element of Q-
a partition. To each partition A of weight n, we associate its transpose
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P (5\1, ;\2, e ,5\,), where ;\k is the number of integers A; such that
A > koI po= (p1, o, -+ ) is also a partition, we will say that g is a
sub-partition of A, or that p C A, if u; < A; for all 1.

We denote by 0 the element (0,0,---) € ;. Let £k € N. We define
the element ¢, of ) given by Vi € N, (e1), = dk; (Kronecker’s §). We
now set ap = €x — €py1. For A, p € Q7 with A D p, we define the
subset Sp(A/u) of QF by

SoMu)={reQ" | “teNkeNy k<A1 —
and v = )\7”+(>\f+1—ﬂf+l—lf)‘af}.

So(A) stands for So(A/0).

DEFINITION 2.2. The diagram (or shape) of an element A € Q7 is
the set {(i,j) € N? | 5 < \;}, and is denoted by A,. The skew-shape of
apair A, p € Qf, such that A D u, is Ay — A, and is denoted by Ax/u-

Clearly, Ay 0 = Ax.

DEFINITION 2.3. Let X be a totally ordered set and let A, u € Q7.
We define Tab,,,(X) to be the set Homy.((Ay/,, X). An element of
Taby,,(X) is called a tableau of shape A/p with values in the set X.

DEFINITION 2.4. For A, p € Q" with lg (A — u) < g, we define
Sauly AajuF, Dy F oas follows :

S/\/[IF:S)\1‘;11F®"'®S,\(I_“’1F
/\/\/“ = /\)\1—7“1F® ®/\’\!17l’qF
D)\//JF:D)\l—;llF@-..@D,\q_#qF.

Since SoF = A’F = DyF = R, this definition does not depend on
the choice of q. If A 2 u, then Sy, F = Ay F = Dy F =0 by
definition.

For A\, p € Q~,let s = A; and t = A, and (a;;) be the s x ¢ matrix
given by a;; = 1if (i,j) € Ay, and a,; = 0 otherwise. We denote by
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dx/u(F') the composition of maps

MpF=N"MEg...@ \ " F

AMA(/\anF@...@/\“M}T‘)@...®(/\aslp®...@/\astF)

(1) (50, F®+ ®84, F)® - ® (80, FR®---® S, F)
——“)(SGUF@“'@SGQF)@”'@(Sa1tF®"'®SastF)

m@;'éf’ms~ F®'”®SS\,§—/§,1F:SX/[),F’

A —fiy

where the second map is induced by identification A%iF = Sa;; F and
the third map is the permutation according to the index a;;. Similarly,
we define the map dl)\/u(F) from Dy, F to A5, F.

DEFINITION 2.5 (Schur functors and co-Schur functors). Im (dy Iu(F))
(resp. Im (d),,(F))) is denoted by Ly, F(resp. K, ,,F). Ly, F (resp.
K,/ F) is called Schur (resp. co-Schur ) functor with respect to the
skew shape \/pu.

If R=Q, then K, ,F is isomorphic to L3, F as a GL(F)—module,
and is irreducible for y = (0).

The definition of Schur complex is quite similar to that of Schur
functor. Let ¢ : G — F be a morphism of finite free R- modules.
We associate S and Ag with the morphism ¢. S¢ = SF ® AG and
N = AF ® DG are Hopf algebras, and their structures as Hopf algebras
are not dependent on the morphism . They depends only on the mod-
ules F' and G. We can also consider them as complexes. The boundary
map of Sy is the composition of the maps

859 : Sp = SF @ AG L2581 SF @ AL @ AG
1SRG SF © §1F @ NG EEH SF @ AG = S,

where we identify A'G = G and S, F = F. Similarly, the boundary map
of Ay is the composition of the maps

9" : Ap= AF® DG 2876 AP @ DG @ DG
Hnr8eRidne b @ AL @ DG ™ EEEPE \p @ DG = Ap.
For ¢ € Ny, we denote by S;y the subcomplex of S¢ given by
0 —ANG—FRANIG— ... — -1 F G — S;F — 0.
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S¢ is the graded R—complex 3, . Sip, and deg(S;p)= 2i in Sp. Sim-
ilarly, we denote by A’y the subcomplex of Ay given by

0—DG—F®D,_1G— - — AN I'FRG — AN'F — 0

Ay is the graded R-complex ),y A'p, and deg(A'p)= i in Ap. Note
that Ay is isomorphic to (S;¢*)" as an R—complex. We always assume
that S;p = Alp = 0ifi<0.

Now let A, p € Q% with lg(A — ) < q.

DEFINITION 2.6. We define S/, and Ay, as follows:

S)\/u(p: S/\l“ll1(p®"'®5)\q—/iq§0a
/\)‘/“(p: /\’\1_“1(’0®...®/\/\q—uq(’0.

Now let A, p € 7. We define d,,, () as the similar composite map
to dy/,(F). We have only to replace every F' by ¢ in the definition (1).
The Schur complez of ¢ with respect to the skew shape A/pis Im (dy ).
If G = 0,then Ly,, o= Ly, F. If F= 0, then Lyjup= Ky G in
degree |\ — p.

Let us fix an ordered basis X = {z; < --- < z,,} of F and an ordered
basis Y = {y1 < - < yp} of G. Weput Z = X UY and let Z be
a totally ordered basis for which X < Y, that is, for which z; < y; for
any ¢ and j.

DEFINITION 2.7. A tableau S € Tab,,,(X) is called row-standard
if the rows of S are strictly increasing, i.e., if for all i = 1,---,q we
have S(i, u; +1) < S(i, ps +2) < --- < S(i, A;). The tableau S is called
column-standard if the columns of S are non-decreasing, i.e., if for all
Jj= 1,---,t (t = A1) we have S(i,5) < S(i + 1,7) where (i,5) and
(i +1,7) are both in A,,,. S is called standard if it is both row- and
column-standard.

DEFINITION 2.8. A tableauT € Tab,,,(Y) is called co-row-standard
if the rows of T are non-decreasing, and co-column-standard if the
columns of T are strictly increasing. T is called co-standard if it is
co-row- and co-column-standard.

Clearly, the set {Xs | § € Tab,,,(X) and S is row-standard} is a
free basis of A/, F" and the set {Yr | T € Tab,,,(Y) and T is co-row-
standard} is a free basis of D,,,G.
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For U € Taby,,(Z), we obtain an element Zy = 2y, ® --- ® 2v,,
with . )
ZUi = eUi-U(i,al)/\--~/\U(i,a1)®y§t1)~--y7(f"),

where

ey, = (__1)#{(a,ﬁ)|a>ﬁ, U(i,0)eX, U(iﬁ)EY},

{ala"' ,al} = {]l (17.7) € A)\/u and U(Zaj) € X}

with a; < --- < og and t} = (U, y;) for each j.

DEFINITION 2.9. A tableau U € Tab,,,(Z) is called row-standard
mod Y if each row of U is non-decreasing, and if, when repeats occur
in a row, they occur only among elements of Y. U is column-standard
mod Y if each column is non-decreasing, and if, when repeats occur in a
column, they occur only among elements in Z —Y = X. U is standard
mod Y if U is row- and column-standard mod Y.

We let Rowy/,(Z,Y) = {U€ Tab,,,(Z)| U is row-standard mod Y'}.
It is easy to see that {Zy € Ay/,p| U € Row,/,(Z,Y)} is a basis of
Ax/up- Before stating the standard basis theorem, we introduce the
notion of universally free functor.

DEFINITION 2.10. Let Tg(Fi,---,Fy,) be a functor to be the cate-
gory of R—modules defined for all commutative rings R and all n—tuples
of (finite) free R—modules Fi,--- , F,,. T is called universal if T5(S ®
—,-++,5 ® —) is naturally equivalent to S ® Tgr(—, -, —) for any ring
morphism ¢ : R — S. Tg is called universally free if Tg is uni-
versal and Tgr(F1,---,F,) is free for any n—tuple Fy,--- ,F,. Let
fr: Tr — Tx be a natural transformation of universal functors de-
fined for all commutative rings R. fgr is called universal if for any ring
morphism ¢ : R — S and any n—tuple of R- modules F1,---, F}, the
diagram

S®Tr(Fy, -, F,) S®fr(F1 Fn), S®@TH(Fy, -, Fp)

Ts(S@F, - ,8® F,) L8380, g om ... 8@ F,)

is commutative.

For example, SF,AF and DF are universally free. Their structure
morphisms as Hopf algebras are universal. Tensor product and direct
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sum of universally free functors are universally free. If fp : Tp — T} is
universal, then Coker(fgr) is universal functor and the map
coker fg : Tj; — Coker (fr) is universal, since S® — preserves cokernel.

THEOREM 2.11. (The Standard Basis Theorem for Schur Complexes)
Let A\, p€ Q™ with A D u, and let ¢, X, Y, and Z be as above.

{dx/.(Z7)| T is standard tableau mod Y in Taby,,(Z)}
is a free basis for Ly;,p, and the sequence

O d
S A 28 A Y Ly — 0

veSn(A/p)

is exact. Hence Ly, is universally free and dy,,(y) is universal. In
particular,

{dr/u(XT)| T is a standard tableau in Taby,,(X)}
(resp. {d),,(Yr)| T is a co-standard tableau in Taby;,(Y)})

is a free basis of Ly, F (resp. K»,,G), and the sequence

O, dx)u(F
S AF 2 A F P L 0
veSalM/w

Oa dj ;. (G)
(resp. Z D.G 24 Dy G AN Ky;,G —0)
veSo(r/p)

is exact. Hence, Ly, F and K,,G are universally free.

The rest of this section is devoted to review the theory of symmetric
functions is deeply related to the representation theory of general linear

groups.
Let x = zy,--+ ,2n, -+ be an infinite sequence of indeterminates.
For n € Ny, we denote by R, the polynomial ring Z[z;,--- ,2,]. The

symmetric group &, acts on R, via the permutations of indeterminates.
We denote by A, the invariant subring R®~. A, is decomposed into
direct sums : A, = Y, A%, where AX is the module of homogeneous
invariants of degree k. For integers m, n with m > n > 0, we define
Pn,m : Rm — Ry to be the map given by pn m(z;) = z; (i < n) and
Prm(T:) =0 (i > n). It is easy to see that p, (A% ) = AX. We define
A¥ =lim A%, and A =3, ., AF. A, = A has the structure of a graded
ring. We call an element of A a symmetric function (of z). A is not
dependent on the order of the sequence z. It only depends on x as a set.
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DEFINITION 2.12. Let » € Ny. We define e, and h, to be the sym-
metric functions given by

A
&= ef(z)= =) Tiy  Tip Ty, € AT,

)\€Qj‘7 5\1=7- i1 <t < - <ip
hr = h.(z) = E z* € A", where z* = Hmf‘l
reqt ieN

Furthermore, for a partition A, we define
sx = det(hr—i+jh1<ig<igr) (he =0 for 1 <0)
and call Sy the Schur function corresponding to the partition A.

LeEMMA 2.13 [12, 1.(2.4)]. A = Zlej, ez, -] and the e; are alge-
braically independent over Z.

By Lemma 2.13, we can define a ring homomorphism
w(=wg): Ay — A, given by w(e,) = h,.

LEMMA 2.14 [12, 1.(2,7)]. w is an involution (i.e., w? = idy).

LEMMA 2.15 [12, 1.(3,3)]. {sA| A € Q. } is a Z- basis of A".

Now let p € Q and v € Q; (k,l € Ny). We can write

— A A
Sy 8y = E cpo - Sa (¢, €EZ).
reQ-

Since s, s, € A*L, |\ # k+1 implies cf;,,, = 0. For arbitrary partitions

A and p, we define
A
Sx/p = Z Cpu,v Sv
veQ-

and call sy, a skew Schur function corresponding to A and p.

LEMMA 2.16 [12, 1.(5,4),(5,5),(5,6)].
SOVITRS det(h}\i—ﬂj—i"'j)lfi,jSS\l = det(e,'\i-ﬁj—iﬂ)lﬁi,j&\l

so that w(sx/,) = 855
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LEMMA 2.17 [12, 1.(4.10)]. The involution w is an isometry, i.e.,
<wu,wv > =< UuU,v >.

Now we consider two sets of indeterminates ¢ = xi,Z2,--- and
Y= Y. Y2, .

LEMMA 2.18 [12, I.Example 5 (a), (b)]. We have two equations:

3o osu=JJ0-23)  [J-wz)

§: even i i<j

where the sum on the left is over all even partitions p(i.e., with all parts

w; even). And
Z 8y = H (1- a:,-xj)_l.

. even i<j

LEMMA 2.19 [12, L.Example 27 (a)].

o soa= [[A-ziz) ™ > san

p: even i<j T: even

and

Z Sp/n = H(l—xixj)“l- Z Sx/7

p: even 1<j T: even

LEMMA 2.20 (7, Lemma 1.4.10]. Let A\, p € Q= with A D u. We
have

rank Ly, F' = rank K; . F = s;\/ﬁ(lm),

where s5,;(1m) is the value of skew Schur function in m variables
SS\/ﬁ(xlv"' ,xm) at Ty ="' =Ty, = 1.

Now for a morphism of finite free R- modules ¢ : G — F with rank
F = m and rank G = n, and for partitions A, 4 € Q~ with A D p, the
rank of the underlying module of Ly, is calculated as follows:

rank Ly, = Z rank(L.,, F®K),,G]| = Z 5x/v(1n) 8575 (1m).

pnCyCA nCYCA
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3. The decomposition of S(A%p)

For a morphism of finite free R-modules ¢ : G — F, we have a
complex

Ap: 00— DG -5G®F 25 A2F — 0,

where a = B8 = 8" : D,GNF 22 D, .G®G® NF

Di.1G@F@NF '¥™" D, 1G® N*IF.
Now by applying a functor S to A%p, we obtain a new complex

1@pR®1
—

S(A%p) = S(N’F) @ A(F ® G) ® D(D2G) = ©S,(A%p),

where S, (A%0) = 31 pier Sa(A2F)RAY(FQG) QD (D G). Its bound-
ary map is

57 (S(N)) = Lpy2em SINPF) ® AY(F © G) ® De(D>G)
Bs(m®id+(—1)bid®8“°‘)l
(S(N2Q)1_1 = Sy a0—1-1 S(NF) © A (F ® G) ® Do (D3G).
For a nonnegative integer r, in order to construct a natural filtration
of S.(A2yp), we need to define some maps.

DEFINITION 3.1. We define a map 6 = 6x(¢) as the composite map

l‘m A
0r = Ox(@) : Ny A®-QA (\290 ® - ® /\246 TSGR Si(A2p).

-~

k—times

Moreover, for a partition A € ., the following composite map is
denoted by 8, :
/\2)\(p — /\2/\150®‘..®/\2)\q¢

9>\1®--'®9,\ql
S (A2p) ® - @ Sy, (M%)
’”S(A%p)l

Sxitrg (N2) = S (A29).
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NOTE. We can extend the map 8 to one for any sequence u, so that
Im6, = Im 6;.

DEFINITION 3.2. For each k € N, we define a map w;, as the compo-
sitions

A% QAB (R
s o te S 2 e kg @ (e ® - ® ALY)

“ -

k—alrmes k?f;mes
T 1 1 1 1 MAp® - ®Mpyp 2 9
—"’(/\11$0®/\r150)®~-®(/\lktp®/\rkcp) — 1\80®...®/\f

v

k—times

+)4m
B msnze Sk(A2p),

where (£) means that we can take the appropriate sign as the situation
ie., for each 0 < i,7 < k and (AFp); @ (AFp); C ARp ® AFp, we give

{+ when k—j=0o0r k+j =1 (mod 4)

— otherwise

and A}, is obtained from the left A®p, AL, o is obtained from the right
AFp, but these are just used in order to distinguish the origin, i.e.,
N = Ao = Ao

NOTE. We can easily see that the diagram

A2k AR Ao @ AR
ﬂ"tekl wkl
Sk(n?p) ——  Sk(A%p)
is commutative.

DEFINITION 3.3. For a partition A € 7, GL(F) x GL(G)-subcompl-
exes M) and M, of S.(A%yp) are defined as

My = Z Im 6, and M, = Z Im 6,.

PEQT, u>A HEQD, u>A



40 Eun J. Choi, Young H. Kim, Hyoung J. Ko, and Seoung J. Won
NoTE. When Ao = (17), My, = S, (A%p).

THEOREM 3.4 (Plethysm Formula on S,.(A%¢)). For any arbitrary
commutative ring R and a non- negative integer v, {My}, - is a
natural filtration of S,.(A%p) such that its associated graded complex is
2ear Lare.

Proof. We have only to show that for any partition A € Q7, M,/ M,
is isomorphic to Loyp as a GL(F)x GL(G)-module. Now consider the
diagram

AP —2 M, C S, (A2p)

dzA(cp)J( P/\l
Loag —25  My/Ms,

where p) is the projection. Let 1) be the composite map p)o6y. In order
to construct the isomorphism 8y : Loxp & My/M,, it is sufficient to
show that ker dgx (@)= ker 9.

1) We will prove ker day(,) € ker 9. Since Loy = A /Im(0),
this is equivalent to show that Im(0) C ker ¢y, i.e., Yoo O = 0 for
each partition A € Q2,7

Let A € Q.7 be of the form (A1, Az, --+,Ag). Then 2X is (2X1, 2,
-++, 2)g) and the map [ is

g—1 2X¢41
E /\2)\1 <p ® e ® /\2)\t_1(p ® /\2At+l/(p ® /\2)\t+1—l/<p ® e ® /\2)\q(p
t=1

v=1
q

+

i

~1 224
O=% v 1%0¢-1g0,91%@-t-1
t=1

v=1

/\2)\80 — /\2)\1(p® e ®Az)\t—l(p®/\2)\t(p®/\2At+1‘10®"' ®/\2/\q¢.

In order to prove 150 O = 0, we have only to show that 1,0 (1®¢-1v ®
0, ® 1®@-t-1) = 0 for each t and v. And it is sufficient to show that

0 O, (AT @ APV p) e > Im6, = M,

“GQ;1+A27 u>A

for any partition A = (A1, A2) of length 2 and 1 < v < 2As.
Fortunately we have a nice claim : Let [ = min{y, 2A; — v}.
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The diagram

/\2A1+l/(p ® /\2)\2_1/50 DV /\2A1Lp ® /\2)\2(p

al H(Al-)\z)l

o B8
@k(/\Z/\l—HH—k‘P Y /\2/\2 k‘P) - S)\l +A2 (/\290)

is commutative, where

= Y Biandd= ol e

v = k mod2

for some CE;’:C,]M) € 7Z.

If we proved the above claim, we obtain the result 8, - [0, € M.

We will use the induction on A; and [.

i) For Ay =1, then A= (1,1), 2A= (2,2),v= 1,2and [ =0,1.

a) Whenl = 0,i.e., v = 2: Since 8; = ids2,) , O(2) = %(ms(/\zw) o
A) and

Mo L Ao A2y

Al 9(1,1)l
2 2 = Ms(rZy)
N Np ———5  S53(A¥)

is commutative, so 6(1,1y oz = 2-63)0 Oy and C([f?]) =9,

b) When! = 1,ie,v= 1:Letz@y € A3p®Alyp, since §; = tdazy,

O,y oDz ®y) = buy) O (sen(a’, ")) 2’ @ 2" - y)

z’

=3 (sgn(a’,2")) msrap (@ @ " - y),
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where A(z) = Y__ (sgn(z’,z")) 2’ ® 2" € A2p @ Alp. And

- 1
0(2) o Dl(.’E ®y) = 9(2)(33 . y) = 5 . [ms(/\z‘p) o A](I : y)

1
= 51 MS(r2)
: [Z (sgn(x’,a"))z’ @ 3" -y + Y (sgn(a’,a")) o -y ® x]
1
= 5 . mS(/\zw) (2 Z(sgn(:c', CDH)).’L'/ 03¢ :1;" . y)

=) (sen(z’,2")) mg(p2g) (@ @ 7" - y).

Hence we proved this case and C([iil) = 1.
i) If Ay > 1, 1e, A= (A1, A2), 22 = (2A1,2X2), v =1,--+ ,2A and
1=0,1,---, Aa.

a) When [ = 0Oie., v = 2Xy : We have the commutative diagram

/\2>\1+2>\2Q0
szzl
9 k}
/\2)\190 ® /\ZAZSD R Sxi+rz (/\2(,0)
A®(>\1)®A®(A2)l ms(sz)T
PNp@ @M@ (Npe - 8N —— S, (NP0) @S (A),
A1 —Times A2 ——‘t?mes

where 7 = 51y -Mg(a20) ® 557 M (a2p)- And (5, 12,) is the compositions

1
AR { 7 Ts(A2
/\2’\1+2/\2<P ® @A /\290 QR ® /\246 Mrz) STe) Sxi+As (/\2cp).

A1+A2—times

. _ N 1
SO’ 0()‘1‘)‘2) © D2>‘2 = ()\1)_\}_1)\2) ) 0()\1-{-)\2) © DO and C([il,zi(:]) = ()‘ ;1)\2)'

When | = 1, then v = 1 or 2X, — 1. We consider first (v = 1)- case.
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b) When [ = 1 and v = 1: We have two commutative diagrams

(A1.22)

]
A2,\1+1¢® APl O, /\2,\1%9® A2Az AL S>\1+>\2(/\2SD)

A®A| T 01001
A2 @ [N @ Alg] @ A2 20 1S AR @ AZp @ A2 72y
ARAT L 8o1,0-1)

Oai+1,25-1)
—

-1 O -
AL, @ A2A2=1, T 2052 g AZh =2, S, (A200).

Hence 8y, 5,y © 01 = 0, 41,5,—-1) 1 and C([f\,xl,])\'z) = L

c) When! = 1, and v = 2X2—1: We have two commutative diagrams

(A1,22)

. 0
APFRR L @ ALy 2T AP @ ARA2, LA Gy L (A2)

A®id] T 0aae—11)
/\2)‘190 ® /\2)‘2_190 ® /\150 id®Ls [A2)\1(p ® /\2,\%290] ® /\280
and i
APMH20=1, 0 AL Gy | A2
Ol LO+a)

O(x1425-1.1)
MEALN

[/\2)\1+2)\2_2(P] ® /\290 S/\1+>\2(/\250)'

By the way, for the above two [ ]'s, by ii)’s a), the diagram

(A1+/\A1271).9()\1 +Ag—1)

A2A1F2r2 =2, Sai+ra-1(Ap)

DQ)\Q—?J/ idT

O, 20-1) 2
—_— Sxi+r-1(A%9)

/\2)\1 Lp ® /\2)\2—2¢

is commutative. So, #x, x,) 0 Uax,—1 = ()‘1+)\’\12"1) “Bxn,422) © 0; and
(2A2-1,1] _ (/\1+,\2~1)
(A,22) T A1 :
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d) When!>1 andv= 2,3,---,203—2: Let 2@y € APy ®
A2V and for each i = [ (mod2), let

U =) (sen(z,z")) - (sen(y’,y"))

Z, yl

Oy qezi (@) @il @Y") - Oy, e (),
where A((L’) — E:}:’ (sgn(x’,x”)) - = /\2)‘1+V_i<,0 ® /\iQO and

Aly) = (sen(y,y"))y' ®y" € NP7 o @ Ay

yl
Now consider

B(x1,20) © O.(x ~y)= 9(,\1,A2)(Z(Sgn(x'(1)»33'(’1))) (33/(1) ® xl(,l) “Y),

4
Z(1)

where A(z) = ngl)(sgn(xh)’xﬁ))) 21y ® 2y € NP NP
Then it is

Z(Sgn(xl(l),wl(ll))) 9/\1(55’(1))

()
> SN (sen(zly), 2())

1<k<l, v = k mod2 x22) yzl)

(8050 ) O 01) - @ulaly @) - On, - 0|

-3 [Z S Y (sen(ely), ) (sen(zlay, 2lh))

= ! ’ ’
1<k<l, v = k mod2 Ty Ty Y

(Sgn(yfl)ayﬁ))) [eh(x,u)) ) 9"_;’2(37'(2))]

(ol @) 6y, )

2

where A(z(},) = Zm,(z) (sgn(z(y), T(o))) T(o) ® Ty € AN "Ep ® Ak, and

Aly) = Eyzl)(Sgn(yh)vyEIl))) Ya) ® Yy € Nep @ NPra=vFep,
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Since by ii)’s a), the diagram

v—k
(»\1*:\12 )'9(A1+u—k)
/\2)\1+U—k(p 2 S)\1+U_;ﬁ(/\2§0)
N J]
2X v—k H(XI’V;’C) 2
AN @ N R — Sy+es:(N0)

is commutative, so the above equation is

2 ()\1 1;1“—5’9) [Z(Sgn(ml(s)’ z(3)))

1<k<l, v = k mod2 1.23)
2) ' Z(Sgn(yfn’yﬁ)))"m%k (z(3)) - @ (2(3) ® Y(1))
Y
* 0A2— u;—k (yE,l))J

A+ 5
= Z ( )\12 )'Uk)

1<k<l, v = k mod2

where A(z) =5, (sgn(m’(?,),a:’(’?)))) T3 ® Ty € AP tr =k, @ Ak,

T(3)

By the way, for 1 <k <land v = k mod 2,

023t 2g2yt) © Di(@ ® 1)

= Ony gt ap— gty (Q_(s8n(u(n), ¥(1)) (2 9y @ 4()

2

Y()

3 (sen(ya vlhy) [ 3 3D

< = = ’ I
1<m<k, v = k = m mod2 Ty Yz

Y
(sgn(:r@),:c&))) (Sgn(yéQ), Uélz))) ‘9>\1+% (1524)) : Wm(x&) ® y22))

"
2 6]

: 9’“—2’" (yé)) : 9)\2—

where A(2) = 5, (580(z(s),27y)) oy ® 3y € AT 0 AT
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and A(y(y)) = Ly, (s80((), () Yiz) B Y(z) € A"9 @A,

= Z Z Z Z(Sgn(yél),yﬁ)))

k, v = k = m mod2 yél) .1:24) yzz)

T(ay T(a))) (580(Y(2), Y(2))) Or, 4 2m (T(ay) - T2y ® Y(2))

1
vik (y(l))] .

Since by ii)’s a), we have a commutative diagram

_v+t
(o2 )0, vim

o ——m (Ag——5—)
AZAz i o 2 S)\z_y-:%n—1 (/\280)

S b

o(k—m Ao — u%k)
——-—)

Ak—m¢®A2)\g—u—k(P ‘S’)\2_V+Tm(/\280)$

the above equation is

)\ __vtm
DI (D 3) S CAEM)

= = / !
k, v = k = m mod2 Tiay Y3y

Y(3) (3)))9,\1+v_-2ﬂ(f”/(4))'wm($£2)®y23))'9,\2 m (Y(3))

v+m

- > (/\2 k—_m2 ) U,

1<m<k, v = k = m mod2 2

where A(y) =35,/ (s8n(Y(s) ¥(s))) Yz) B Y(s) € AP @A

In (3), when m = k, (’\Qk—__u"?m) =1. So
U = 005, 24, 2,-23) © D@ ®Y)

N A

1<m<k, v = k = m mod2

2
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Thus in (2),
e
O(r, a0 0 Ou(z @ y) = > \ Uy,
1<k<l, v = k mod2 1

_ ) (Al §1”5k> ,

1<k<l, v = k mod2

S R ey A

1<m <k, v = k = m mod?2

"

O 2

2
By induction hypothesis, for 1 <m <k, v = k =m mod 2,
um € Im(@lgk’gm, v = k' = m mod?2 0()\1+z-g_k” )\2_%19/) © Dk')'
_ [v,k] =
Hence 0(x,,2,) 0D = @1<k<t, =k mod2 (C(3) xy)  0ia, 4235 2, - vty 0 L)

and C([K;k],\z) € Z. Therefore, we completed the claim.

2) To prove Loy = M,/ M., it remains only to show that

Z rank(Loyp) = rank(S,(A%p)).
A€

Let rank(F)= m and rank(G)= n.

rank(S, (A%p))
= Y rank[S,(A’F) @ A°(F ® G) ® Dc(D2G))]
a+b+4c=r
= ) rank(S,(A’F)) - rank(A°(F ® G)) - rank(D.(DaG)).
a+b+ce=r
Since
rank(S,(A’F)) = > rank(LoxF) = Y s5,(1m),
weNy weNy
rank(A°(F ® G)) = Z rank(L,F ® K,G) = Z 8a(Im) - su(1n),
neQ, HESY,

rank(D.(D2G)) = Z rank(K5,G) = Z s2-(14.),

TENS TEQ
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rank(S, (A%))
= 2 [Z si(lm) = D (sa(lm) - su(1n)) - Y 3241”)].
a+bte=r “,e0r peQy reqs

On the other hand,

rank(Lax(¢))
= Z rank(L,F ® K3, /,G) = Z Saa/y(1n) - 85(1m).
0C~C2x 0C~C2x

Hence, we have only to show that

Do say(la) - s5(lm)

A€ 0C~yC2A

= 3 [ s X attn) i) 3 i)

a+bte=r e pe, TEQT

Now consider

2r
Z Z 32A/'y(1n) : sﬁ(lm) = Z Z Z 32)\/7(171) . 3’7(1m)

Aeny 0CyE2A 7=0 yeQ; xeQy

For each v € Qj_, ji=20,1,-.-,2r, by Lemma 2.19,
> sy =[O - ziz) D sy/m
e 1<j 2w

And by Lemma 2.18,

Z Sy = H(l —~z;z5) "t

7n:even i<j

E Sox/y = Z'SZT : E Sy /2w-
27 2w

AeQ,

So we have
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Since
Sy /2w = chw . Su where |y| = [2w] + [u,
m

Z 52)‘/’7 = Z Sar - Z[Z cgw,p, ’ sﬂ]‘
2T 2w p

ey

And we have

i > [Z 52)\/7(171)} +55(1m)

7=0ye0; "req;

= Z Z {Z 52"’(171) ’ Z chw,u ) S#(ln):| ’ 3:7(17”)
27 2w p

ijyle
Y et S sntta) 3 i)
3=0 27 veQ;

By Lemma 2.16 and Lemma 2.17,
_22527- ZZS“ ) ’:324‘) 1 ) ’Sﬂ(l'm):l?
7=0 27

where |2w| + |u| = |y| = j. By the way [2)] = 2r, |2)] = |y] + |27 + |u,
and [2w| + |u| = |7/, so

2r = [yl + [27] + ul = (12w] + ) + 127] + |ul = 2Jw] + 2|u] + 2|7].

And so r = |w| + |u| + |7|. Hence the above equation is

Z 2327(171) 'Z(Su(ln) +55(1m)) 'Esél(l

jwl+ |l +|r|=r 27 T

= [Z 552 (1m) - Y (sa(lm) - 8, (1a)) - 3 327(1,1)}.

a+b+c=r weNs ne, reQs

Therefore we completed the proof of Theorem 3.4. )
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COROLLARY 3.5. For an arbitrary commutative ring R and an ar-
bitrary non-negative integer r, {Mx},cq- is a natural filtration of

S-(A?F) such that its associated graded module is ), .- LarF.

Proof.  We have a plethysm formula for S.(A?F), when we take
¢: 0 — F in the Theorem 3.4. |

COROLLARY 3.6. For an arbitrary commutative ring R and an ar-
bitrary non-negative integer r, { My} xeq- Is a natural filtration of
D, (D5QG) such that its associated graded module is ) reqr KaaG.

Proof. We have a plethysm formula for S.(A%2F), when we take
¢: G — 0 in the Theorem 3.4. O
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