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UNIFORMITY OF HOLOMORPHIC VECTOR BUNDLES
ON INFINITE-DIMENSIONAL FLAG MANIFOLDS

E. BALLICO

ABSTRACT. Let V be a localizing infinite-dimensional complex Ba-
nach space. Let X be a flag manifold of finite flags either of finite
codimensional closed linear subspaces of V or of finite dimensional
linear subspaces of V. Let E be a holomorphic vector bundle on X
with finite rank. Here we prove that E is uniform, i.e. that for any
two lines D, R in the same system of lines on X the vector bundles
E|D and E|R have the same splitting type.

1. Introduction

Let V be a locally convex and Hausdorff topological vector space and
r a positive integer. Let P(V) be the set of all one-dimensional linear
subspaces of V' ([2], §7). Let Grass(r, V) be the set of all r-codimensional
closed linear subspaces of V. By Hahn - Banach any such subspace A
has a closed supplement M. Fixing M and varying A among the closed
supplements of M we obtain an open chart of Grass(r, V). Varying M
we equip Grass(r, V) with a structure of complex manifold ([1], Chapter
2, or [3], Chapter III, §1). Let Gr(r,V) be the set of all r-dimensional
linear subspaces of V. Every finite-dimensional linear subspace of V is
closed and complemented ([4], Proposition V.31). Hence choosing such
complements we equip Gr(r, V) with a structure of complex manifold.
Hence G(1,V) = P(V), while Grass(1,V) = P(V’), where V' is the
topological dual of V. All the lines of Grass(r, V) are described in the
following way. Fix a closed (r —1)-codimensional linear subspace B of V
and a closed two-codimensional linear subspace A of B. Let D(A, B) be
the set of all closed r-codimensional linear subspaces H of V such that
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A C H C B. The set D(A, B) is the line determined by the subspaces
A and B. Notice that D(A,B) = P!. All the lines of Gr(r,V) are
described in the following way. Fix an (r—1)-dimensional linear subspace
A of V and an (r + 1)-dimensional linear subspace B of V such that
A C B. Let D(A, B) be the set of all r-dimensional linear subspaces H
of V such that A C H C B.

Now we generalize this construction to the case of flags of linear sub-
spaces of V. Fix a positive integer m and positive integers ry > - -+ > 7.
Let Flag(m;ri, -+ ,mm;V) be the set of all m-ples (Hy,- -, H,,) of
closed linear subspaces of V' such that H; C Hj; if ¢ < j and each
H; has codimension r;. Let Fli(m;r1,--- ,7m; V) be the set of all m-ples
(A1, -+, Ap) with A; r;-dimensional linear subspace of V and A; C A; if
j < i. The flag manifolds Flag(m;ry,--- ,rm; V) and Fl(m;ry, - ,rm;
V) are connected complex manifolds. If m = 1 the flag manifolds
Flag(m;ri, --- ,7m; V) and Fl(m;r1,--- ,7m; V) are just the Grassman-
nian manifolds Grass(r1, V) and Gr(ry, V). Now assume m > 2. There
are morphisms f; : Flag(m;r1, -+ ,7m; V) — Grass(r;, V), 1 < i < m,
defined by f;((Hi,---,Hn)) = H;. There are morphisms g; : Fl(m;ry,

rmy V) — Gr(r, V), 1 < ¢ < m, defined by g;((41,--- ,4m)) = A;.
Fix an integer ¢ with 1 < ¢ < m and codimension r; linear subspaces
Hjof V,1 < j<m,j# i Ifi=mlet H) bea codimension
rm — 1 closed linear subspace of V' and H}, a closed codimension two
linear subspace of H)). If 1 <i < m —1 let H/ be a closed codimen-
sion 7341 — r; — 1 linear subspace of H;;; and H] a closed codimension
two linear subspace of H containing H,; ;. Let D be the set of all
m-ples (Hy,--- , Hp,) such that H; is a closed hyperplane of H contain-
ing H'. Hence D is a closed analytic subset of Flag(m;r1,--- ,7m; V)
and D = P!. We will say that D is a line of type i or an i-line
of Flag(m;r1, - - ,7m;V). In a very similar way one can define the
lines of type i or the i-lines of Fl(m;ry,--- ,rm; V). It is easy to see
by induction on m that the linear group GL(V) acts transitively on
the set of all i-lines of Flag(m;r1,--- ,7m;V) and on the set of all i-
lines of Fl(m;ri,--- ,rm;V). Let E be a holomorphic vector bundle
on Flag(m;ry, - ,rm; V) (resp. Fl(m;ry,--+ ,rm; V)) with finite rank.
Set s := rank(E). We will say that E is i-uniform if there are integers
a1, ,as such that E|D has splitting type a1, - - , a5 for every i-line D.
We will say that F is totally uniform if it is i-uniform for every integer 4
with 1 < ¢ < m. For the notion of localizing Banach space and of local-
izing complex manifold, see [2], p.509. Every Hilbert space is localizing.
Hence Theorems 1 and 2 below are true for any infinite-dimensional
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Hilbert space. By Remark 2 below if V' (resp. V) is localizing, then
Flag(m;r, - ,rm; V) (resp. Fl(m;ry,-+-,rm;V)) is localizing. The
aim of this paper is to prove the following results.

THEOREM 1. Let V be an infinite-dimensional Banach space such
that V' is localizing and E a holomorphic vector bundle with finite rank
on Flag(m;r1, - ,7m; V). Then E is totally uniform.

THEOREM 2. Let V be an infinite-dimensional and localizing Ba-
nach space and E a holomorphic vector bundle with finite rank on
Fl(m;ry,--- ,rm; V). Then E is totally uniform.

REMARK 1. Notice that for every integer ¢ with 1 < ¢ < m both
Flag(m;r1,--- ,rm; V) and Fl(m;ry,--- ,rm; V) are covered by i-lines
and hence Theorems 1 and 2 seem to capture a very strong property of
Flag(m; 71, -+ ,rm; V) and Fl(m;ry, - ,7m; V) which does not hold for
finite-dimensional V.

Holomorphic vector bundles with finite ranks on increasing unions of
projective spaces (i.e. on P(V) with V = C™N) je. V with countable
algebraic dimension) are classified in [6] and [5]. A similar classifica-
tion is known for holomorphic vector bundles with very low rank on
Gr(r,CM™) ([5], 4.7, 4.8, 4.12, 4.19, and 4.20). However, C™ is not a
Banach space and for infinite-dimensional Banach spaces the geometry
of P(V) seems to be quite different. L. Lempert proved that if V is
an infinite-dimensional localizing Banach space, then every holomorphic
vector bundle on P(V) is isomorphic to a direct sum of suitable line
bundles ([2], Theorem 8.5) and in particular it is uniform. To prove
Theorems 1 and 2 we will heavily use this theorem of Lempert.

2. The proofs

REMARK 2. Let V be a Banach space. V is localizing if and only if
V ® C is localizing. If V is localizing, then for all integers s > 1 the
Banach space V®¢ is localizing.

Proofs of Theorems 1.1 and 1.2. We will write down only the proof
of Theorem 1 because the proof of Theorem 2 requires only notational
modifications.

Step 1) Here we will do the case m = 1 and set 7 :=r;. If r = 1,
then the result is just a very particular case of [2], Theorem 8.5. Hence
we may assume r > 2. Fix lines D, R of Grass(r, V), say represented
by pairs (D', D"”) (resp. (R',R")) with D” (resp. R") codimension



88 E. Ballico

r — 1 closed linear subspace of V' and D’ (resp. R') codimension two
closed linear subspace of D” (resp. R"). There are natural inclusions
of Grass(1, D") and Grass(1, R”) into Grass(r,V). Grass(1,D") (resp.
Grass(1, R")) is isomorphic to the projective space over the topological
dual of D" (resp. R”). Since D” and R” have a closed supplement
in V, by Remark 2 we may apply (2], Theorem 8.5, to E|Grass(1,D")
and E|Grass(1, R”). Thus there are integers a; > --- > a5 and b; >
o+ > bs, s = rank(FE), such that E|Grass(1,D") & OGraSS(l,D”)(al) ®
- D OGrass(l,D”)(aS) and F|Grass(1, R") & OGrass(l,RH)(bl) DD
OGrass(l, R,,)(bs). It is sufficient to prove that a; = b; for every i and

any choice of linear subspaces D” and R”. Since dim(V") is infinite, there
is a holomorphic family, say {Bx}xea, of (s + 1)-dimensional projective
subspaces of Grass(r, V') with A open disk of C and a,b € A such that
Ba C Grass(1,D") and By, C Grass(1, R”). All vector bundles are direct
sums of line bundles. Since s+ 1 > 2, we may use local rigidity of direct
sums of line bundles on any projective space of dimension at least two
to obtain a; = b; for every i; since dim(B)) = s + 1 > rank(FE), it would
be sufficient to take a continuous family {B)}xca of (s+1)-dimensional
projective subspaces and compute the Chern classes of the decomposable
vector bundle E|Bj.

Step 2) Here we assume m > 2. Fix i € {1,---,m} and two i-
lines D, R contained in Flag(m;ry, -+ ,ry; V). As in the proof of
the case m = 1 given in Step 1 it is sufficient to show the existence
of infinite-dimensional localizing Banach spaces A, B such that D C
P(A) C Flag(m;ry,--+ ,mm; V), R C P(B) C Flag(m;r1,--- ,7m; V), a
connected continuous family of (s + 1)-dimensional projective subspaces
of Flag(m;71,- - ,7m; V) and two members of the family, one containing
D and the other one containing R. These assertions are easily proved
by induction on m using the projections f;, 1 < j < m, and the case
m = 1 proved in Step 1. O
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