DOI QR코드

DOI QR Code

4-Al2TiO5 Ceramics Induced by Thermal Expansion Anisotropy""> Erratum to: "Grain Boundary Microcracking in ZrTiO4-Al2TiO5 Ceramics Induced by Thermal Expansion Anisotropy"

  • Kim, Ik-Jin (Institute for Processing and Application of Inorganic Materials(PAIM), Department of Materials Science and Engineering, Hanseo University) ;
  • Kim, Hyung-Chul (Institute for Processing and Application of Inorganic Materials(PAIM), Department of Materials Science and Engineering, Hanseo University) ;
  • Lee, Kee-Sung (Energy Materials Research Team, Korea Institute of Energy Research (KIER)) ;
  • Han, In-Sub (Energy Materials Research Team, Korea Institute of Energy Research (KIER))
  • Published : 2003.03.01

Abstract

The grain-boundary microcracking materials in the system A1$_2$Ti $O_{5}$ -ZrTi $O_4$(ZAT) is influenced by the thermal expansion anisotropy. The range of ZAT compositions investigated had showed very low thermal expansions of 0.3~1.3$\times$10$^{-6}$K compared to 8.29$\times$10$^{-6}$K of pure ZrTi $O_4$and 0.68$\times$10$^{-6}$K of polycrystalline A1$_2$Ti $O_{5}$ , respectively, compared with the theoretical thermal expansion coefficient for a single crystal of A1$_2$Ti $O_{5}$ , 9.70$\times$10$^{-6}$K. The low thermal expansion and microcraking temperature are apparently due to a combination of thermal contraction and expansion caused by the large thermal expansion anisotropy of the crystal axes of the A1$_2$Ti $O_{5}$ phase.

Keywords

References

  1. Acta Cryst. v.B28 Structure Studies on Al₂Ti$O_9$ at Room Temperature and at 600℃ Morosin;R.W.Lynch
  2. J. Am. Ceram. Soc. v.70 no.8 Grain Boundary Microcracking due to Thermal Expansion Anisotropy in Aluminium Titanate Ceramics Y.Ohya;Z.Nakagawa
  3. J. Less. Common. Met. v.24 no.2 Thermal Expansion Characteristics and Stability of Pseudobrookitetype Compounds M₃$O_5$ G.Bayer https://doi.org/10.1016/0022-5088(71)90091-9
  4. J. Am. Ceram. Soc. v.56 no.8 Influence of Grain Size on Effects of Thermal Expansion Anisotropy in MgTi₂$O_5$ J.K.Kuszyk;R.G.Bradt https://doi.org/10.1111/j.1151-2916.1973.tb12714.x
  5. J. Am. Ceram. Soc. v.61 no.11-12 Grain size/Microcracking Relations for Pseudobrookite Oxides I.J.Cleveland;R.C.Bradt https://doi.org/10.1111/j.1151-2916.1978.tb16121.x
  6. Canadian Metallugical Quarterly v.39 no.4 Thermal Shock Resistance and Thermal Expansion Behaviour with Compostion and Microstructure of Al₂Ti$O_5$ Ceramics I.J.Kim;H.S.Kwak https://doi.org/10.1179/cmq.2000.39.4.387
  7. J. Am. Ceram. Soc. v.C-18 Investigation of the Phas Transformation in ZrTiO₄-SnO₂Solid Solutions A.H.Michale;R.S.Roth
  8. J. Am. Ceram. Soc. v.73 no.4 Al₂Ti$O_5$ -ZiTiO₄-ZrO₂Composites : A New Familiy of Low-thermal-expansion Ceramics Fred J. Parke https://doi.org/10.1111/j.1151-2916.1990.tb05138.x
  9. Trans AIME v.197 R.L.Fullman
  10. Ceram. Age v.60 Thermal Expansion Hysteresis of Aluminiumn Titanate W.R.Buessem;N.R.Thielke;R.V.Sarakauskas
  11. J. Am. Ceram. Soc. v.5 no.5 Acoustic Emission of Aluminium Titanate R.E.Wright
  12. J. of the Kor. Ceram. v.2 no.4 Effect of Grain Size on the Thermomechanical Properties of Al₂TiO Ceramics I.J.Kim;O.S.Kweon;Y.S.Ko;C.Zogarfou
  13. J. of the Kor. Ceram. Soc. v.35 no.10 Thermal Shock Resistance of Al₂Ti$O_5$ Ceramics Prepared from Electrofused Powders I.J.Kim;C.Zogarfou