DOI QR코드

DOI QR Code

Three-dimensional relative-distance measurement by use of the phase-shifting digital holography

위상천이 디지털 홀로그래피를 이용한 3차원 상대 거리 측정

  • Kim, Hyun (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Lee, Yeon-H. (School of Information and Communication Engineering, Sungkyunkwan University)
  • 김현 (성균관대학교 정보통신공학부 광정보 시스템 연구실) ;
  • 이연호 (성균관대학교 정보통신공학부 광정보 시스템 연구실)
  • Published : 2003.04.01

Abstract

In this paper we present a new method of measuring the relative distance of two point objects in three-dimensional space by using phase-shifting digital holography. In our system the reference beam of a spherical wave is used instead of a plane wave. The system is computer simulated and built on an optical table for experiments. It is shown from computer simulations and experiments that the relative distance can be measured without the exact information on the reference beam used in the hologram record. It is shown from experiments that the relative distance between two point objects separated by 0.5 cm in the distance of about 300 cm from the CCD can be measured with an error less than 10%.

본 논문에서는 기존의 위상천이 디지털 홀로그래피에서 기준빔으로 사용되는 평면파 대신 보다 일반적인 구면파를 이용하여 3차원 공간상에 위치한 두 물체점들 사이의 상대적인 거리를 측정하는 새로운 시스템 및 알고리듬을 제안한다. 본 논문에서는 이러한 시스템에 대한 모의실험 및 광학실험을 실시하였다. 이러한 시스템에서는 홀로그램 기록에 사용된 기준빔의 정확한 정보를 알고 있지 않더라도 3차원 공간상의 두 물체점들 사이의 상대적인 거리를 정확하게 측정할 수 있다. 본 논문에서는 광학실험을 통하여 약 300 cm 거리에서 서로 0.5 cm 떨어진 두 물체점들 사이의 상대적인 거리를 10% 미만의 오차로 측정하였다.

Keywords

References

  1. T. Aoki, M. Takabe, K. Mizutani, and T. ltabe, 'Laser-ranging scanning system to observe topographical deformations of volcanoes,' Appl. Opt., vol. 36, no. 6, pp. 1239-1244, 1997 https://doi.org/10.1364/AO.36.001239
  2. E. Gagnon and J. F. Rivest, 'Laser range imaging using the self-mixing effect in a laser diode,' IEEE Trans. on Inst. and Meas., vol. 48, no. 3, pp. 693-699,1999 https://doi.org/10.1109/19.772198
  3. B. Journet and G. Bazin, 'A low-cost laser range finder based on an FMCW-like method,' IEEE Trans. on Inst. and Meas., vol. 49, no. 4, pp. 840-843, 2000 https://doi.org/10.1109/19.863935
  4. G. Mourat, N. Servagent, and T. Bosch, 'Distance measurement using the self-mixing effect in a three-electrode distributed Bragg reflector laser diode,' Opt. Eng., vol. 39, no. 3, pp.738-743, 2000 https://doi.org/10.1117/1.602421
  5. J. A. Beraldin, F. Blais, M. Rioux, L. Cournoyer, D. Laurin, and S. G. MacLean, 'Eye-safe digital 3-D sensing for space applications,' Opt. Eng., vol. 39, no. 1, pp. 196-211, 2000 https://doi.org/10.1117/1.602352
  6. Z. Sodick, E. Fischer, T. Ittner, and H. J. Tiziani, 'Twowavelength double heterodyne interferometry using a matched grating technique,' Appl. Opt., vol. 30, no. 22, pp. 3139-3144, 1991 https://doi.org/10.1364/AO.30.003139
  7. T. Li, A. Wang, K. Merphy, and R. Claus, 'White-light scanning fiber Michelson interferometer for absolute position-distance measurement,' Opt. Lett., vol. 20, no. 7, pp. 785-787, 1995 https://doi.org/10.1364/OL.20.000785
  8. U. Schnell and R. Dandliker, 'Dispersive white-light interferometry for absolute distance measurement with dielectric multilayer systems on the target,' Opt. Lett., vol. 21, no. 7, pp. 528-530, 1996 https://doi.org/10.1364/OL.21.000528
  9. H. G. Rhee, J. Y. Chu, and S. W. Kim, 'Volumetric inteferornetry using spherical wave interference for three-dimensional coordinate metrology,' J. Opt. Soc. Kor., vol. 5, no. 4, pp. 140-145,2001 https://doi.org/10.3807/JOSK.2001.5.4.140
  10. H. G. Rhee and S. W. Kim, 'Absolute distance measurement by two-point diffraction interferometry,' Appl. Opt., vol. 41, no. 28, pp. 5921-5928, 2002 https://doi.org/10.1364/AO.41.005921
  11. K. Creath, 'Phase-measurement interferometry techniques,' Progress in Optics, vol. 26, pp. 349-393, 1988 https://doi.org/10.1016/S0079-6638(08)70178-1