Fabrication and Characterization of 3D Woven Textile Reinforced Thermoplastic Composites

3차원 직조형 열가소성수지 복합재료 제조 및 특성화

  • 홍순곤 (한국기계연구원 재료기술연구소 복합재료그룹) ;
  • 변준형 (한국기계연구원 재료기술연구소 복합재료그룹) ;
  • 이상관 (한국기계연구원 재료기술연구소 복합재료그룹)
  • Published : 2003.04.01

Abstract

In order to overcome one of the most pronounced shortcomings of conventional laminated composites, such as the low damage tolerance due to delamination, the thermoplastic materials and 3D (three-dimensional) preforms have been utilized in the manufacture of composite materials. From the newly developed process termed as the co-braiding, hybrid yarns of the thermoplastic fibers (PEEK) and reinforcing fibers (carbon) have been fabricated. In order to further enhance the delamination suppression, through thickness fibers have been introduced by way of 3D weaving technique in the fabrication of textile preforms. The preforms have been thermoformed to make composite materials. Complete impregnation of the PEEK into the carbon fiber bundles has been confirmed. For the comparison of mechanical performance of 3D woven composites, quasi-isotropic laminates using APC-2/AS4 tapes have been fabricated. Tensile and compressive properties of both the composites have been determined. Furthermore. the open hole, impact and CAI(Compression After Impact) tests were also carried out to assess the applicability of 3D woven textile reinforced thermoplastic composites in aerospace structures.

본 논문은 열경화성수지 적층 복합재료의 낮은 충격 특성과 층간 분리 현상을 개선하고자 열가소성 수지 및 3차원 직조 프리폼을 사용한 복합재료 제조와 물성 특성화에 대한 것이다. 새로운 기술인 co-braiding 성형법으로 열가소성 PEEK 섬유와 탄소섬유를 혼합한 섬유를 제조하였으며. 층간 분리 억제 특성을 현저하게 향상시키기 위하여 두께방향의 섬유를 가지는 3차원 직조형 프리폼을 제조하였다. 혼합섬유로 제조된 프리폼에 열성형 공정을 적용함으로써 열가소성 복합재료를 제조하였으며. 혼합섬유의 PEEK 섬유는 용융온도에서 용융되어 탄소섬유 사이로 함침이 완벽하게 일어남을 확인하였다. 또한, APC-2/AS4 프리프레그를 사용한 준 등방 적층 복합재료를 제조하여 3차원 직조형 열가소성 복합재료의 특성과 비교하였다. 항공기 소재로서의 적용 가능성을 알아보기 위하여 open hole 인장시험, 충격시험, 및 충격 후 압축시험 등의 결과를 통하여 3차원 직조형 열가소성 복합재료는 기존의 적층 복합재료보다 우수한 내 충격성 손상허용치를 가짐을 보였다.

Keywords

References

  1. 4th International Symposium for Textile Composites Development of textile reinforced composites for aircraft structures Decter, H. B
  2. Composites Science and Technology v.60 Processing and characterization of 3D woven and braided thermoplastic composites Kuo, W. S;Fang, J https://doi.org/10.1016/S0266-3538(99)00161-X
  3. Composites, Part A v.31 ehavior of 3D orthogonal woven CFRP: Part I Experimental Investigation Tan, P;Tong, L;Steven, G. P.;Ishikawa, T https://doi.org/10.1016/S1359-835X(99)00070-6
  4. Composites Part A v.30 Tensile properties and failure mechanisms of 3D woven GRP composites Callus, P. J.;Mouritz, A. P.;Bannister, M. K.;Leong, K. H. https://doi.org/10.1016/S1359-835X(99)00033-0
  5. Composites Part A v.27 On the tensile failure of 3D woven composites Cox, B. N.;Dadkhah, M. S.;Morris, W. L. https://doi.org/10.1016/1359-835X(95)00053-5
  6. Composite Science and Technology v.60 Open-hole tensile strength of quasi-isotropic laminates Morais, A. B. https://doi.org/10.1016/S0266-3538(00)00089-0
  7. 8th. Japan-US Conference on Composite Materials Comparison and discussion about compression after impact (CAI) properties obtained by SACMA and NASA methods Ishikawa, T;Matsushima, M;Hayashi, Y
  8. Int. J. Impact Energy v.21 Size effects on impact response of composite laminates Liu, D;Raju, B. B.;Dang, X. https://doi.org/10.1016/S0734-743X(98)00036-0