An Overview of Liquid Spray Modeling Formed by High-Shear Nozzle/Swirler Assembly

  • Koo, Ja-Ye (School of Aerospace and Mechanical Engineering, Hankuk Aviation University)
  • 발행 : 2003.05.01

초록

A multi-dimensioanl model is being increasingly used to predict the thermo-flow field in the gas turbine combustor. This article addresses an integrated survey of modeling of the liquid spray formation and fuel distribution in gas turbine with high-shear nozzle/swirler assembly. The processes of concern include breakup of a liquid jet injected through a hole type orifice into air stream, spray-wall interaction and spray-film interaction, breakup of liquid sheet into ligaments and droplet,5, and secondary droplet breakup. Atomization of liquid through hole nozzle is described using a liquid blobs model and hybrid model of Kelvin-Helmholtz wave and Rayleigh-Taylor wave. The high-speed viscous liquid sheet atomization on the pre-filmer is modeled by a linear stability analysis. Spray-wall interaction model and liquid film model over the wall surface are also considered.

키워드

참고문헌

  1. Aigner, M. and Wittig, S., 1987, 'Swirl and Counter Swirl Effects in Pre filming Airblast Atomizers,' ASME Paper 87-GT-204
  2. Amsden, A. A., O'rourke, P. J. and Butler, T. D., 1989, 'KIVA-II - A Computer Program for Chemically Reactive Flows with Sprays,' Los Alamos National Labs., LA -11560- MS
  3. Bai, C. and Gosman, A. D., 1996, 'Mathmatical Modeling of Wall Films Formed by Impinging Sprays,' SAE Paper 960626
  4. Bower, G. R., Chang, S. K., Corradini, M. L., El-Beshbeeshy, M., Martin, J. K. and Krueger, J., 1988, 'Physical Mechanisms for Atomization of a Jet Spray: A Comparison of Models and Experiments,' SAE Trans., Vol. 97, SAE Paper No. 881318
  5. Chang, S. K., Koo, J. Y. and Chung, H. C., 1995, 'Transient Liquid Jet Breakup Model and Comparison with Phase Doppler Measurements,' KSME International Journal Vol. 9, No. 1, pp.41-50
  6. Cohen, J. M. and Rosfjord, T. J., 1993, 'Influences on the Sprays Formed by High-Shear Fuel Nozzle/Swirler Assemblies,' Journal of Propulsion and Power, Vol. 9, No. 1, pp. 16-27 https://doi.org/10.2514/3.51351
  7. Dombrowski, N. and Johns, W. R., 1963, 'The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,' Chemical Engineering Science, Vol. 18, pp.203-214 https://doi.org/10.1016/0009-2509(63)85005-8
  8. Fan, L. and Reitz, R. D., 2000, 'Spray and Combustion Modeling in Gasoline Direct-Injection Engines,' Atomization and Sprays, Vol. 10, pp.219-249 https://doi.org/10.1615/AtomizSpr.v10.i3-5.30
  9. Foucart, H., Habchi, J. F., Le Coz, J. F. and Baritaud, 1988, 'Development of a Three Dimensional Model of Wall Fuel Liquid Film for Internal Combustion Engines,' SAE Paper 980133
  10. Hiroyasu, H. and Arai, M., 1990, 'Structures of Fuel Sprays in Diesel Engines,' SAE paper 900475
  11. Hwang, S. S. and Koo, J. Y., 1997, 'Modeling the Atomization of Fuel Droplets in High Speed Air Stream,' Proceedings of the 30th International Symposium on automotive & Automation, pp. 279 - 284
  12. Ibrahim, E. A. and Przekwas, A. J., 1991, 'Impinging Jets Atomization,' Phys. Fluids A 3 (12), pp.2981-2987 https://doi.org/10.1063/1.857840
  13. Lin, S. P. and Reitz, R. D., 1988, 'Drop and Spray Formation from a Liquid Jet,' Annu. Rev. Fluid Mech. Vol. 30, pp. 85-105 https://doi.org/10.1146/annurev.fluid.30.1.85
  14. Mansour, A., Benjamine, M. A. and Steinthorsson, E., 2000, 'A New Hybrid Air Blast Nozzle for Advanced Gas Turbine Combustor,' ASME Paper 2000-GT-117
  15. Matsumoto, S. and Saito, S., 1970, 'On the Mechanism of Suspension of Particles in Horizontal Conveying: Monte Carlo Simulation Based on the Irregular Bouncing Model,' (Japanese) J. Chem. Engr., Vol. 3, pp. 83-92 https://doi.org/10.1252/jcej.3.83
  16. Muller, D. E., 1956, 'A Method for Solving Algebraic Equations Using an Automatic Computer,' Mathematics of Computation, Vol. 10, pp.208-215 https://doi.org/10.2307/2001916
  17. Naber, J. D. and Reitz, R. D., 1988, 'Modeling Engine Spray/Wall Impingement,' SAE Paper 880107
  18. O'Rourke P. J. and Amsden, A. A., 1987, 'The Tab Method for Numerical Calculation of Spray Droplet Breakup,' SAE Paper 872089
  19. Nicholls, J., 1972, 'Stream and Droplet Breakup by Shock Waves,' NASA SP-194, pp. 126128
  20. Pilch, M., 1981, 'Acceleration Induced Fragmentation of Liquid Drops,' University of Virginia, Ph. D. Thesis
  21. Pilch, M. and Erdman,C. A., 1987, 'Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of a Liquid Drop,' Int. J. Multiphase Flow, Vol. 13, No.6, pp.741-757 https://doi.org/10.1016/0301-9322(87)90063-2
  22. Ranger, A. A. and Nicholls, J. A., 1969, 'Aerodynamic Shattering of Liquid Drops,' AIAA Journal Vol. 7, No.2, pp. 285-289 https://doi.org/10.2514/3.5087
  23. Reitz, R. D. and Bracco, F. V., 1979, 'On the Dependence of Spray Angle and Other Spray Parameters on the Nozzle Design and operating Conditions,' SAE Paper 790494
  24. Reitz, R. D. and Diwakar, R., 1986, 'Effects of Drop Breakup on Fuel Sparys,' SAE paper 860469
  25. Reitz, R. D., 1987, 'Modeling Atomization Processes in High-Pressure Vaporizing Sprays,' Atomisation and Spray Technology, Vol. 3, pp. 309-337
  26. Reitz, R. D., 1994, 'Computer Modeling of Sprays,' Spray Technology Short Course Note, Pittsburgh, PA, May 17
  27. Rosskamp, H., Willmann, M., Meisl, J., Meier, R., Maier, G. and Wittig, S., 1998, 'Effect of the Shear Driven Liquid Wall Film on the Performance of Prefimming Airblast Atomizer,' ASME Paper 98-GT-500
  28. Senecal, P. K., Schmidt, D. P., Nouar, I., Rutland, C. J., Reitz, R. D. and Corradini, M. L., 1999, 'Modeling High- Speed Viscous Liquid Sheet Atomization,' International Journal of Multiphase Flows 25, pp. 1073-1097 https://doi.org/10.1016/S0301-9322(99)00057-9
  29. Simpkins, P. G. and Bales, E. L., 1972, 'WaterDrop Response to Sudden Accelerations,' J. Fluid Mech., Vol. 55, Part 4, pp. 629-639 https://doi.org/10.1017/S0022112072002058
  30. Stanton, D. W. and Rutland C. J., 1996, 'Modeling of Film Formation and Wall Interaction in Diesel Engines,' SAE Paper 960628
  31. Stanton, D. W. and Rutland C. J., 1998, 'MultiDimensional Modeling of Heat and Mass Transfer of Fuel Films Resulting from Impinging Sprays,' SAE Paper 980132
  32. Taylor, G. I., 1960, 'Formation of Thin Flat Sheets of Water,' Proceedings of Royal Society, London, Vol. 259A, pp. 1-17
  33. Taylor, G. I., 1963, 'The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes. 1,' The Scientific Papers of G. I. Taylor Vol. 3, pp. 532 - 536, edited by Batchelor, G. K., Cambridge University Press
  34. Taylor, G. I., 1966, 'Oblique Impact of a Jet on a Plane Surface,' Phil. Trans. Roy. Soc. (London) A, Vol. 260, pp. 96-100 https://doi.org/10.1098/rsta.1966.0034
  35. Wu, P. K., Kirkendall, K. A., Fuller, R. P. and Nejad, A. S., 1997, 'Breakup Processes of Liquid Jets in Subsonic Crossflows,' Journal of Propulsion and Power, Vol. 13, No.1, pp. 64-73 https://doi.org/10.2514/2.5151
  36. Zuo, B., Black, D. L. and Crocker, D. S., 2002, 'Fuel Atomization and Drop Breakup Models for Advanced Combustion CFD Codes,' AIAA Paper 2002-4175
  37. Xin, J., Ricart, L. and Reitz, R. D., 1998, 'Computer Modeling of Diesel Spray Atomization and Combustion,' Combust. Sci. and Tech., Vol. 137, pp.171-194 https://doi.org/10.1080/00102209808952050