Synthesis and Non-Isothermal Crystallization Behavior of Poly (ethylene-co-1,4-butylene terephthalate)s

  • Jinshu Yu (Department of Applied Chemistry, Harbin Institute of Technology) ;
  • Deri Zhou (Department of Applied Chemistry, Harbin Institute of Technology) ;
  • Weimin Chai (Department of Applied Chemistry, Harbin Institute of Technology) ;
  • Lee, Byeongdu (Department of Chemistry, Center for Integrated Molecular Systems, BK21 Program, Division of Molecular and Life Sciences, and Polymer Research Institute, Pohang University of Science and Technology) ;
  • Le, Seung-Woo (Department of Chemistry, Center for Integrated Molecular Systems, BK22 Program, Division of Molecular and Life Sciences, and Polymer Research Institute, Pohang University of Science and Technology) ;
  • Jinhwan Yoon (Department of Chemistry, Center for Integrated Molecular Systems, BK23 Program, Division of Molecular and Life Sciences, and Polymer Research Institute, Pohang University of Science and Technology) ;
  • Moonhor Ree (Department of Chemistry, Center for Integrated Molecular Systems, BK24 Program, Division of Molecular and Life Sciences, and Polymer Research Institute, Pohang University of Science and Technology)
  • Published : 2003.02.01

Abstract

A series of random poly(ethylene-co-1,4-butylene terephthalate)s (PEBTs), as well as poly(ethylene terephthalate) (PET) and poly(1,4-butylene terephthalate) (PBT), were synthesized by the bulk polycondensation. Their composition, molecular weight, and thermal properties were determined. All the copolymers are crystallizable, regardless of the compositions, which may originate from both even-atomic-numbered ethylene terephthalate and butylenes terephthalate units that undergo inherently crystallization. Non-isothermal crystallization exotherms were measured over the cooling rate of 2.5-20.0 K/min by calorimetry and then analyzed reasonably by the modified Avrami method rather than the Ozawa method. The results suggest that the primary crystallizations in the copolymers and the homopolymers follow a heterogeneous nucleation and spherulitic growth mechanism. However, when the cooling rate increases and the content of comonomer unit (ethylene glycol or 1,4-butylene glycol) increases, the crystallization behavior still becomes deviated slightly from the prediction of the modified Avrami analysis, which is due to the involvement of secondary crystallization and the formation of relatively low crystallinity. Overall, the crystallization rate is accelerated by increasing cooling rate but still depended on the composition. In addition, the activation energy in the non-isothermal crystallization was estimated.

Keywords

References

  1. Chemical and Engineering News
  2. Modern Plastics Encyclopedia N. J. Brozenic(ed.)
  3. Encyclopedia of Polymer Science and Technology v.11 I. Goodman;H. F. Mark(ed.);N. G. Gaylord(ed.);N. M. Bikale(ed.)
  4. Am. Chem. Soc. Org. Coat. Plast. Chem. Pap. v.34 W. F. H. Borman;M. Kramer
  5. Polymer v.40 S. W. Lee;M. Ree;C. E. Park;Y. K. Jung;C. S. Park;Y. S. Jin;D. C. Bae
  6. Macromol. Chem. Phys. v.201 S. W. Lee;B. Lee;M. Ree https://doi.org/10.1002/(SICI)1521-3935(20000201)201:4<453::AID-MACP453>3.0.CO;2-C
  7. Polym. Eng. Sci. v.28 H. J. Ludwig;P. Eyerer https://doi.org/10.1002/pen.760280304
  8. Makromol. Chem. v.19 M. L. Wallach
  9. Colloid Polym. Sci. v.258 K. H. Iller https://doi.org/10.1007/BF01498267
  10. Ploym. J. v.26 C. H. Herrero;J. L. Acosta https://doi.org/10.1295/polymj.26.786
  11. Polym. Composities v.9 P. Cebe
  12. Polymer v.12 T. Ozawa https://doi.org/10.1016/0032-3861(71)90041-3
  13. Polymer v.19 T. Ozawa https://doi.org/10.1016/0032-3861(78)90060-5
  14. J. Res. Natl. Bur. Stds. v.57 H. E. Kissinger
  15. Anal. Chem. v.29 H. E. Kissinger https://doi.org/10.1021/ac60131a045
  16. J. Appl. Polym. Sci. v.47 M. Partkar;S. A. Jabarin https://doi.org/10.1002/app.1993.070471005
  17. Makromol. Chem. v.187 T. Yu;H. Bu;J. Chen https://doi.org/10.1002/macp.1986.021871120
  18. J. Polym. Sci., Polym. Chem. Ed. v.12 W. L. Hegenrother https://doi.org/10.1002/pol.1974.170120417
  19. Macromol. Chem. Phys. v.202 J. W. Lee;S. W. Lee;M. Ree https://doi.org/10.1002/1521-3935(20011001)202:15<3072::AID-MACP3072>3.0.CO;2-V
  20. J. Polym. Sci., Polym. Phys. Ed. v.35 R. Phillips;J. A. E. Manson https://doi.org/10.1002/(SICI)1099-0488(19970430)35:6<875::AID-POLB2>3.0.CO;2-H
  21. Encyclopedia of Polymer Science and Engineering v.12 H. F. Mark(et al.)
  22. Macromol. Res. v.10 J. Bolze;J. Kim;J.-Y. Huang;S. Rah;H. S. Yoon;B. Lee;T. J. Shin;M. Ree https://doi.org/10.1007/BF03218282
  23. Macromolecules B. Lee;S. W. Lee;M. Ree
  24. J. Res. Natl. Bur. Stand. v.66A J. D. Hoffman;J. J. Weeks https://doi.org/10.6028/jres.066A.003
  25. Macromolecules B. Lee;S. W. Lee;T. J. Shin;M. Ree
  26. J. Polym. Sci., Polym. Phys. Ed. v.35 R. Phillips;J. A. E. Manson https://doi.org/10.1002/(SICI)1099-0488(19970430)35:6<875::AID-POLB2>3.0.CO;2-H
  27. Polymer v.27 P. Cebe;S. D. Hong https://doi.org/10.1016/0032-3861(86)90006-6
  28. J. Appl. Polym. Sci. v.73 Y. C. Ou https://doi.org/10.1002/(SICI)1097-4628(19990801)73:5<767::AID-APP17>3.0.CO;2-I