Mechanical Properties and Failure Mechanism of the Polymer Composite with 3-Dimensionally Stitched Woven Fabric

  • Lee, Geon-Woong (Polymer Hybrid Research Center, Korea Institute of Science and Technology) ;
  • Park, Joong-Sik (Polymer Hybrid Research Center, Korea Institute of Science and Technology) ;
  • Lee, Sang-Soo (Polymer Hybrid Research Center, Korea Institute of Science and Technology) ;
  • Park, Min (Polymer Hybrid Research Center, Korea Institute of Science and Technology) ;
  • Kim, Junkyung (Polymer Hybrid Research Center, Korea Institute of Science and Technology) ;
  • Choe, Chul-Rim (Polymer Hybrid Research Center, Korea Institute of Science and Technology) ;
  • Soonho Lim (Polymer Hybrid Research Center, Korea Institute of Science and Technology)
  • Published : 2003.04.01

Abstract

The mechanical properties and failure mechanisms of through-the-thickness stitched plain weave glass fabric/polyurethane foam/epoxy composites were studied. Hybrid composites were fabricated using resin infusion process (RIP). Stitched sandwich composite increased drastically the flexural properties as compared with the unstitched fabrics. The breaking of stitching yarns was observed during the flexural test and this failure mode yielded relatively high flexural properties. Composites with stitched sandwich structure improved the mechanical properties with increasing the number of stitching yarns. From this study, it was concluded that proper combination of stitching density and types of stitching fiber is important factor for through-the-thickness stitched composite panels.

Keywords

References

  1. Microstructural Design of Fiber Composites T. W. Chou
  2. Compos. v.28 A. P. Mauritz;K. H. Leong;I. Herszberg https://doi.org/10.1016/S1359-835X(97)00057-2
  3. J. Compos. Mater. v.24 J. H. Byun;J. W. Gillespie;T. W. Chou https://doi.org/10.1177/002199839002400503
  4. J. Compos. Mater v.28 R. A. Naik;P. G. Ifju;J. E. Masters https://doi.org/10.1177/002199839402800705
  5. Compos. v.31 B. Yang;V. Kozey;S. Adanur;S. Kumat https://doi.org/10.1016/S1359-8368(99)00052-9
  6. Compos. Sci. Technol. v.58 K. A. Dransfield;L. K. Jain;Y.-W. Mai https://doi.org/10.1016/S0266-3538(97)00229-7
  7. Compos. Sci. Technol. v.58 L. Tong;L. K. Jain;K. H. Leong https://doi.org/10.1016/S0266-3538(97)00122-X
  8. J. Mater. Sci. v.31 G. A. Bibo;P. J. Hogg https://doi.org/10.1007/BF00353091
  9. Polym. Compos. v.15 S. B. Shim;K. J. Ahn;J. C. Seferis https://doi.org/10.1002/pc.750150610
  10. Macromol. Res. v.10 G.-W. Lee;S.-S. Lee;M. Park;J. Kim;S. Lim https://doi.org/10.1007/BF03218305
  11. Polym. Compos. v.12 K. J. Ahn;J. C. Seferis;J. C. Berg https://doi.org/10.1002/pc.750120303
  12. Compos. Sci. Technol. v.57 A. P. Mouritz;J. Gallagher;A. A. Goodwin https://doi.org/10.1016/S0266-3538(96)00164-9
  13. J. Compos. Mater. v.28 T. J. Kang;S. H. Lee https://doi.org/10.1177/002199839402801604
  14. Compos. v.27 A. P. Mouritz https://doi.org/10.1016/1359-835X(96)00010-3
  15. Mater. Sci. Eng. v.A112 W. C. Chung;B. Z. Jang;T. C. Chang;L. R. Hwang;R. C. Wilcox