Proteome in Toxicological Assessment of Endocrine Disrupting Chemicals

프로테오믹스를 이용한 내분비계 교란물질 환경독성 연구

  • 김호승 (한양대학교 자연과학대학 생명과학과) ;
  • 계명찬 (한양대학교 자연과학대학 생명과학과)
  • Published : 2003.06.01

Abstract

It is important to understand the potential human health implications of exposure to environmental chemicals that may act as hormonally active agents. It is necessary to have an understanding of how pharmaceutical and personal care products and other chemicals affect the ecosystem of our planet as well as human health. Endocrine disruption is defined as the ability of a chemical contaminating the workplace or the environment to interfere with homeostasis, development, reproduction, and/or behavior in a living organism or it's offspring. Certain classes of environmentally persistent chemicals such as polychlorinated biphenyls (PCBs), dioxins, furans, and some pesticides can adversely effect the endocrine systems of aquatic life and terrestrial wildlife. Research continues to support the theory of endocrine disruption. However, endocrine disruption researches have been applied to proteomics poorly. Proteomics can be defined as the systematic analysis of proteins for their identity, quantity and function. It could increase the predictability of early drug development and identify non-invasive biomarkers of tonicity or efficacy. Proteome analysis is most commonly accomplished by the combination of two-dimensional gel electrophoresis (2D/E) and MALDI-TOF mass spectrometry (MS) sr protein chip array and SELDI-TOF MS. Proteomics have an opportunity to play an important role in resolving the question of what role endocrine disruptors play in initiating human disease. Proteomics can also play an imfortant role in the evaluation of the risk assessment and use of risk management and risk communication tools required to address public health concerns related to notions of endocrine disruptors. Understanding the need for the proteomics and possessing knowledge of the developing biomakers used to abbess endocrine activity potential will he essential components relevant to the topic of endocrine disruptors.

환경오염이 심각해짐에 따라 국내외적으로 환경에 대한 관심이 고조되고 인체에 해를 끼치는 환경요인으로부터 방어하기 위한 많은 노력들이 기울여지고 있다. 특히 내분비계장애물질이 생식기능과 면역기능을 약화시키고, 행동 이상을 일으키며, 암 발생률을 높인다는 점이 밝혀지기 시작하면서 많은 연구들이 발표되고 여러 가지 방법들이 내분비계장애물질과 더불어 환경분야연구에 응용되어왔지만 단백질을 대상으로 연구하여 유전자기능을 연구하는 프로테오믹스(proteomics) 연구를 접목시키려는 시도가 아직까지는 빈약하다. 프로테오믹스는 기능을 갖는 단백질들의 발현을 종합적이고 정량적으로 측정하는 가장 직접적인 수단이고, 질병, 약물투여, shock 등 생물학적인 동요(perturbation)에 의하여 변하는 단백질들의 발현양상의 변화를 정확하게 관찰할 수 있으며, 생체내 유전자발현의 궁극적인 양상을 규명할 수 있고, 또한 유전자, 단백질 및 질병간의 연결고리를 제공한다. 기존의 biomarker는 다른 질병 표지자와 연관성이 높아 직접적인 유해물질 노출 위험도를 정확히 판정하기 어렵다. 따라서 대량발굴탐색(high-throughput screen-ing)이 가능한 2차원 전기영동 분석과 MALDI-TOF 또는 protein chip array와 SELDI-TOF에 의한 단백질 분자구조 분석기술 및 이들을 지원하는 생물정보학(bio-informatics)의 발전을 이용하여 환경독성 연구에 이용 할 수 있는 표적단백질(biomarker)발굴에 적절한 이용이 가능할 것이다.

Keywords

References

  1. 한국환경생물학회지 v.18 척추동물의 난황형성과 환경에스트로젠 계명찬;한명수
  2. Toxicology v.102 Negative selection in hepatic tumor promotion in relation to cancer risk assessment Andersen,M.E.;J.J.Mills;R.L.Jirtle;W.F.Greenlee https://doi.org/10.1016/0300-483X(95)03051-G
  3. Toxicol. Pathol. v.30 The use of quantitative histological and molecular data for risk assessment and biologically based model development Andersen,M.E. https://doi.org/10.1080/01926230252824789
  4. Exp. Lung Res. v.17 Promotion of mouse lung tumors by bioaccumulated polychlorinated aromatic hydrocarbons Anderson,L.M.;B.L.Eeebe;S.D.Fox;H.J.Issaq;R.M.Kovatch https://doi.org/10.3109/01902149109064432
  5. Biochem. J. v.281 Induction of glutathione S-transferase P-form in primary cultured rat liver parenchymal cells by co-planar polychlorinated biphenyl congeners Aoki,Y.;K.Satoh;K.Sato;K.T.Suzuki
  6. Biochem. Pharmacol. v.42 Alterations in protein synthesis in rat liver cells by in vitro and in vivo exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin Aoki,Y.;E.K.Silbergeld;S.R.Max;B.A.Fowler https://doi.org/10.1016/0006-2952(91)90254-3
  7. Dev. Biol. Stand. v.96 Application of new analytical technology to the production of a well-characterized biological Apffel,A.;J.Chakel;S.Udiavar;S.Swedberg;W.S.Hancock;C.Souders;E.Pungor Jr.
  8. Proteome Research;New Frontiers in Functional Genomics Proteome databases Bairoch A.;M.R.Wilkins(ed.);K.L.Williams(ed.);R.D.Appel(ed.);D.F.Hochstrasser(ed.)
  9. Biochem. Pharmacol. v.61 Repression of cytochrome P450 1A1 gene expression by oxidative stress:mechanisms and biological implications Barouki,R.;Y.Morel https://doi.org/10.1016/S0006-2952(00)00543-8
  10. Cancer Metastasis Rev. v.12 NAD(P)H;quinone oxidoreductasel(DT-diaphorase)expression in normal and tumor tissues Belinsky,M.;A.K.Jaiswal https://doi.org/10.1007/BF00689804
  11. Electrophoresis v.20 Reliable automatic protein identification from matrix-assisted laser desorption/ionization mass spectrometric peptide fingerprints Berndt,P.;U.Hobohm;H.Langen https://doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3521::AID-ELPS3521>3.0.CO;2-8
  12. Trends Biotechnol. v.17 Proteomics:quantitative and physical mapping of cellular proteins Blackstock,W.P.;M.P.Weir https://doi.org/10.1016/S0167-7799(98)01245-1
  13. Conserv. Biol. v.8 Amphibian declines;Judging stability, persistence, and susceptability of populations to local and global extinctions Blaustein,A.;D.Wake;W.Sousa https://doi.org/10.1046/j.1523-1739.1994.08010060.x
  14. Ecotoxicology v.11 The post-genomic era and ecotoxicology Bradley,B.;C.Theodorakis https://doi.org/10.1023/A:1013784828014
  15. Hum. Reprod. v.14 Proteomics in reproductive research: the potential importance of proteomics to research in reproduction Brewis,I.A. https://doi.org/10.1093/humrep/14.12.2927
  16. Chemosphere v.29 PCB metabolism, persistence, and health effects after occupational exposure; implications for risk assessment Brown,J.F Jr.;R.W.Lawton;C.B.Morgan https://doi.org/10.1016/0045-6535(94)90396-4
  17. Toxicol. Appl. Pharmacol. v.115 Differential expression and induction of UDP-glucuronosyltransferase isoforms in hepatic and extrahepatic tissues of a fish, Pleuronectes platessa: immunochemical and functional characterization Clarke,D.J.;B.Burchell;S.G.George https://doi.org/10.1016/0041-008X(92)90376-4
  18. Our Stolen Furture Colborn,T.;D.Dumanoski;J.P.Myers
  19. Fundam. Appl. Toxicol. v.25 Induction of cytochrome P450 isoenzymes after toxicokinetic interactions between 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,2',4,4',5,5'-hexachlorobiphenyl in the liver of the mouse De Jongh,J.;M.DeVito;R,Nieboer;L.Birnbaum;M.Vanden Berg https://doi.org/10.1006/faat.1995.1062
  20. Can. J. Physiol. Pharmacol. v.74 Cytochrome P450 and its interactions with the heme biosynthetic pathway De Matteis,F.;G.S.Marks https://doi.org/10.1139/cjpp-74-1-1
  21. Free Radic. Res. v.31 Effect of peroxisome proliferator on extracelluler glutathione peroxidase in rat Dobashi,K.;K.Asayama;T.Nakane;H.Hayashibe;K.Kodera;N.Uchida;S.Nakazawa
  22. J. Toxicol. Environ. Health B Crit. Rev. v.1 Environmental exposures that affect the endocrine system: public health implications DeRosa,C.;P.Richter;H.Pohl;D.E.Jones https://doi.org/10.1080/10937409809524541
  23. Food Addit. Contam v.17 Animal studies addressing the carcinogenicity of TCDD(or related compounds)with an emphasis on tumour promotion Dragan,Y.P.;D.Schrenk https://doi.org/10.1080/026520300283360
  24. Electrophoresis v.20 A proteome analysis of livers from obese(ob/ob) mice treated with the peroxisome proliferator WY14,643 Edvardsson,U.;M.Alexandersson;V.L.Brockenhuus;A.C.Nystrom;B.Ljung;F.Nilsson;B.Dahllof https://doi.org/10.1002/(SICI)1522-2683(19990101)20:4/5<935::AID-ELPS935>3.0.CO;2-6
  25. Biochem. Pharmacol. v.52 Identification of c-Src as the integral component of the cytosolic Ah receptor complex, transducing the signal of 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD) through tne protein phosphorylation pathway Enan,E.;F.Matsumura https://doi.org/10.1016/S0006-2952(96)00566-7
  26. Biotechniques no.SUP. ProteinChip clinical proteomics;computational challenges and solutions Fung,E.T.;C.Enderwick
  27. Electrophoresis v.21 Protein identification methods in proteomics Gevaert,K.;J.Vandekerckhove https://doi.org/10.1002/(SICI)1522-2683(20000401)21:6<1145::AID-ELPS1145>3.0.CO;2-Z
  28. Protein. Eng. v.13 Mapping protein sequence spaces by recurrence quantification analysis: a case study on chimeric structures Giuliani,A.;P.Sirabella;R.Benigni;A.Colosimo https://doi.org/10.1093/protein/13.10.671
  29. Electrophoresis v.20 Functional proteomics of signal transduction by membrane receptors Godovac-Zimmermann,J.;V.Soskic;S.Poznanovic;F.Brianza https://doi.org/10.1002/(SICI)1522-2683(19990101)20:4/5<952::AID-ELPS952>3.0.CO;2-A
  30. Crit. Rev. Toxicol. v.30 Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid activity in the female rat. A focus on the EDSTAC recommendations Goldman,J.M.;S.C.Laws;S.K.Balchak;R.L.Cooper;R.J.Kavlock https://doi.org/10.1080/10408440091159185
  31. Drug. Metab. Dispos. v.26 The aryl hydrocarbon receptor: studies using the AHR-null mice Gonzalez,F.J.;P.Fernandez-Salguero
  32. Toxicol. Lett. v.102-103 Tiered screening and testing strategy for xenoestrogens and antiandrogens Gray,L.E.Jr https://doi.org/10.1016/S0378-4274(98)00287-2
  33. Growth Horm. IGF Res. v.10 no.SUP.B Contaminant-induced endocrine disruption in wildlife Guillette,L.J.Jr
  34. J. Steroid Biochem. Mol. Biol. v.44 Altered patterns of proteins released in vitro from oviductal and uterine tissue from adult female mice treated neonatally with diethylstibestrol Halling,A. https://doi.org/10.1016/0960-0760(93)90083-9
  35. Electrophoresis v.22 Protein alkylation by acrylamide, its N-substituted derivatives and cross-linkers and its relevance to proteomics: a matrix assisted laser desorption/ionization-time of flight-mass spectrometry study Hamdan,M.;E.Bordini;M.Galvani;P.G.Righetti https://doi.org/10.1002/1522-2683(200105)22:9<1633::AID-ELPS1633>3.0.CO;2-C
  36. J. Am. Soc. Nephrol. v.12 Toward proteomics in uroscopy: urinary protein profiles after radiocontrast medium administration Hampel,D.J.;C.Sansome;M.Sha;S.Brodsky;W.E.Lawson;M.S.Goligrosky
  37. Exp. Biol. Med.(Maywood) v.227 Developing a laboratory animal model for perinatal endocrine disruption: the hamster chronicles Hendry,W.J.3rd;D.M.Sheehan;S.A.Khan;J.V.May
  38. Biochem. Pharmacol. v.62 Reproductive toxicology: current and future directions Hoyer,P.B. https://doi.org/10.1016/S0006-2952(01)00814-0
  39. Environ. Health Perspect v.108 Ecological risk assessment of endocrine disruptors Hutchinson,T.H.;R.Brown;K.E.Brugger;P.M.Campbell;M.Holt;R.Lange;P.McCahon;L.J.Tattersfield;R.van Egmond https://doi.org/10.2307/3434950
  40. Toxicol. Appl. Pharmacol. v.185 Altered protein profile and possible hypoxia in the placenta of 2,3,7,8-tetrachlorodibenzo-p-dioxin-exposed rats Ishimura,R.;S.Ohsako;T.Kawakami;M.Sakaue;Y.Aoki;C.Tohyama https://doi.org/10.1006/taap.2002.9539
  41. Biochem. Biophys. Res. Commun. v.292 The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification Issaq,H.J.;Veenstra,T.D.;Conrads,T.P.;Felschow,D. https://doi.org/10.1006/bbrc.2002.6678
  42. BIophys. Res. Commun. v.231 Of genomes and proteomes James,P. https://doi.org/10.1006/bbrc.1996.6045
  43. Toxicology v.156 Sensitivity of the SRBC PFC assay versus ELISA for detection of immunosuppression by TCDD and TCDD-like congeners Johnson,C.W.;W.C.Williams;C.B.Copeland;M.J.De Vito;Smialowicz,R.J. https://doi.org/10.1016/S0300-483X(00)00330-9
  44. Mol. Pharmacol. v.42 Immunochemical identity of the 2,3,7,8-tetrachlorodibenzo-p-dioxin-and beta-naphthoflavone-induced cytochrome P-450 arachidonic acid epoxygenases in chick embryo liver: distinction from the omega-hydroxylase and the phenobarbital-induced epoxygenase Kanetoshi,A.;A.M.Ward;B.K.May;A.B.Rifkind
  45. Chemosphere v.39 Overview of endocrine disruptor research activity in the United States Kavlock,R.J. https://doi.org/10.1016/S0045-6535(99)00190-3
  46. Toxicol. Lett. v.120 Recent developments in regulatory requirements for developmental toxicology Kimmel,C.A.;S.L.Makris https://doi.org/10.1016/S0378-4274(01)00309-5
  47. Biol. Chem. v.377 Interactions of procarcinogenic heterocyclic amines and indolocarbazoles with the dioxin receptor Kleman,M.;J.A.Gustafsson
  48. Toxicol. Sci. v.47 Induction of hepatic cytochromes P450 in dogs exposed to a chronic low dose of polychlorinated biphenyls Korytko,P.J.;A.C.Casey;B.Bush;F.W.Quimby https://doi.org/10.1093/toxsci/47.1.52
  49. Ann. Chim. v.92 Disposable electrochemical immunosensor for environmental applications Laschi,S.;M.Mascini
  50. Clin. Pharmacol. v.42 Endocrine disruptors:a new scientific role for clinical pharmacologists? Impact on human health, wildlife, and the environment Lathers,C.M. https://doi.org/10.1177/0091270002042001001
  51. J. Biotechnol. v.82 Microfluidic components for protein characterization Laurell,T.;G.Marko-Varge;S.Ekstrom;M.Bengtsson;J.Nilsson
  52. Mass. Spectrom. Rev. v.20 MALDI-TOF mass spectrometry of bacteria Lay,J.O.Jr https://doi.org/10.1002/mas.10003
  53. Clin. Chem. v.48 Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer Li,J.;Z.Zhang;J.Rosenzweig;Y.Y.Wang;D.W.Chan
  54. 2D Proteome Analysis Protocol in Methods in Molecular Bioliology Link,A.J.
  55. Med. Res. Rev. v.19 Application of mass spectrometry for target identification and characterization Loo,J.A.;D.E.DeJohn;P.Du;T.I.Stevenson;Ogorzalek;R.R.Loo https://doi.org/10.1002/(SICI)1098-1128(199907)19:4<307::AID-MED4>3.0.CO;2-2
  56. Curr. Drug. Metab. v.2 Induction of CYP1A1. The AhR/DRE paradigm: transcription, receptor regulation, and expanding biological roles Ma,Q. https://doi.org/10.2174/1389200013338603
  57. Annu. Rev. Biochem. v.70 Analysis of proteins and proteomes by mass spectrometry Mann,M.;R.C.Hendrickson;A.Pandey https://doi.org/10.1146/annurev.biochem.70.1.437
  58. Nat. Biotechnol. v.17 Quantitative proteomics[news] Mann,M. https://doi.org/10.1038/13646
  59. Electrophoresis v.16 Two-dimensional gel electrophoresis and immunoblotting of human serum albumin modified by reaction with penicillins Marzocchi,B.;B.Magi;L.Bini;C.Cellesi;A.Rossolini;O.Massidda;V.Pallimi https://doi.org/10.1002/elps.11501601140
  60. Electrophoresis v.20 A dynamic two-dimensional polyacrylamide gel electrophoresis database of the mycobacterial proteome via Internet Mollenkopf,H.J.;P.R.Jungblut;B.Raupach;J.Mattow;S.Lamer;U.Zimny-Arndt;U.E.Schaible;S.H.Kaufmann https://doi.org/10.1002/(SICI)1522-2683(19990801)20:11<2172::AID-ELPS2172>3.0.CO;2-M
  61. Kaibogaku. Zasshi v.76 Possible effects of endocrine disruptors on male reproductive function Mori,C.
  62. Chem. Res. Toxicol. v.8 A comparative study of mouse liver proteins arylated by reactive metabolites of acetaminophen and its nonhepatotoxic regioisomer,3'-hydroxyacetanilide Myers,T.G.;E.C.Dietz;N.L.Anderson;E.A.Khairallah;S.D.Cohen;S.D.Nelson https://doi.org/10.1021/tx00045a012
  63. Biol. Reprod. v.56 Two-dimensional gel electrophoretic analysis of vectorially labeled surface proteins of human spernatozoa Naaby-Hansen,S.;C.J.Flickinger;J.C.Herr https://doi.org/10.1095/biolreprod56.3.771
  64. Biochem. Pharmacol. v.53 How knockout mouse lines will be used to study the role of drug-metabolizing enzymes and their receptors during reproduction and development, and in environmental toxicity, cancer, and oxidative stress Nebert,D.W.;J.J.Duffy https://doi.org/10.1016/S0006-2952(96)00740-X
  65. Biochem. Pharmacol. v.59 Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis Nebert,D.W.;A.L.Roe;M.Z.Dieter;W.A.Solis;Y.Yang;T.P.Dalton https://doi.org/10.1016/S0006-2952(99)00310-X
  66. Pharmacogenetics v.1 Human AH locus polymorphism and cancer: inducibility of CYP1A1 and other genes by combustion products and dioxin Nebert,D.W.;D.D.Petersen;A.Puga https://doi.org/10.1097/00008571-199111000-00003
  67. Electrophoresis v.21 Biosensor chip mass spectrometry: a chip-based proteomics approach Nelson,R.W.;D.Nedelkov;K.A.Tubbs https://doi.org/10.1002/(SICI)1522-2683(20000401)21:6<1155::AID-ELPS1155>3.0.CO;2-X
  68. J. Chromatogr. A v.705 Protein mass spectrometry: applications to analytical biotechnology Nguyen,D.N.;G.W.Becker;R.M.Riggin https://doi.org/10.1016/0021-9673(94)01256-E
  69. J. Endocrinol. v.167 Octylphenol does not mimic diethylstilbestrol-induced oestrogen receptor-alpha expression in the newborn mouse uterine epithelium after prenatal exposure Nielsen,M.;P.E.Hoyer;J.G.Lemmen;B. van der Burg;A.G.Byskov https://doi.org/10.1677/joe.0.1670029
  70. Toxicol. Pathol. v.28 Endocrine modulators in the food chain and environment Nilsson,R. https://doi.org/10.1177/019262330002800311
  71. Environ. Toxicol. Chem. v.20 Gender benders at the beach:endocrine disruption in marine and eatuarine organisms Oberdorster,E.;A.O.Cheek https://doi.org/10.1897/1551-5028(2001)020<0023:GBATBE>2.0.CO;2
  72. Biochem. Pharmacol. v.43 The distribution of UDP-glucuronosyl-transferases in rat liver parenchymal and nonparenchymal cells Oesch,F.;M.Arand;M.W.Coughtrie;B.Burchell;P.Steinberg https://doi.org/10.1016/0006-2952(92)90237-D
  73. Toxicol. Lett. v.70 The Ah receptor: mediator of the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD) and related compounds Okey,A.B.;D.S.Riddick;P.A.Harper https://doi.org/10.1016/0378-4274(94)90139-2
  74. Eur J. Cancer. Prev. v.7 no.SUP.1 Inadvertent exposure to xenoestrogens Olea,N.;P.Pazos;J.Exposito
  75. Semin. Reprod. Endocrinol. v.15 Dose disruption of immune and endocrine systems by environmental to xins contribute to development of endometriosis? Osteen,K.G.;E.Sierra-Rivera https://doi.org/10.1055/s-2008-1068760
  76. Pharm. Res. v.18 Mass spectrometry innovations in drug discovery and development Papac,D.;Z.Shahrokh https://doi.org/10.1023/A:1011049231231
  77. Dis. Markers v.17 Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF: potential for new biomarkers to aid in the diagnosis of breast cancer Paweletz,C.P.;B.Trock;M.Pennanen;T.Tsangaris;C.Magnant;L.A.Liotta;E.F.Petricoin 3rd. https://doi.org/10.1155/2001/674959
  78. J. Biol. Chem. v.263 Association of the Ah receptor with the 90-kDa heat shock protein Perdew,G.H.
  79. Biochemistry v.29 Analysis of photoaffinity-labeled aryl hydrocarbon receptor heterogeneity by two-dimensional gel electrophoresis Perdew,G.H.;C.E.Hollenback https://doi.org/10.1021/bi00478a014
  80. Chem Biol Interact v.98 Lead-binding proteins in brain tissue of environmentally lead-exposed humans Quintanilla-Vega,B.;D.R.Smith;M.W.Kahng;J.M.Hernandez;A.Albores;B.A.Fowler https://doi.org/10.1016/0009-2797(95)03646-6
  81. Sci. Total. Environ. v.154 Toxicokinetics of chlorobiphenyls and associated physiological responses in marine mammals, with particular reference to their potential for ecotoxicological risk assessment Reijnders,P.J. https://doi.org/10.1016/0048-9697(94)90090-6
  82. Mol. Carcinog v.19 Downregulation of aryl hydrocarbon receptor function and cytochrome P450 1A1 induction by expression of Ha-ras oncogenes Reiners,J.J.Jr;C.L.Jones;N.Hong;R.E.Clift;C.Elferink https://doi.org/10.1002/(SICI)1098-2744(199707)19:2<91::AID-MC4>3.0.CO;2-O
  83. J. Biol. Chem. v.269 Purification and biochemical characterization of two major cytochrome P-450 isoforms induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in chick embryo liver Rifkind,A.B.;A.Kanetoshi;J.Orlinick;J.H.Capdevila;C.Lee
  84. An update. Environ. Health. Perspect. v.108 Endocrine disruptors and human health is there a problem? Safe,S.H. https://doi.org/10.2307/3454608
  85. Biochim. Biophys. Acta. v.1298 Inducibility of cytochromes P-450 by dioxin in liver and extrahepatic tissues of the marmoset monkey(Callithrix jacchus) Schulz,T.G.;D.Neubert;D.D.Savies;R.J.Edwards https://doi.org/10.1016/S0167-4838(96)88917-5
  86. Mar. Environ. Res. v.50 Protein expression signatures identified in Mytilus edulis exposed to PCBs, copper and salinity stress Shepard,J.L.;B.Olsson;M.Tedengren;B.P.Bradley https://doi.org/10.1016/S0141-1136(00)00065-9
  87. Toxicol. Sci. v.50 Estrogenic potencies of several environmental pollutants, as determined by vitellogenin induction in a carp hepatocyte assay Smeets,J.M.;I.van Holsteijn;J.P.Giesy;W.Seinen;M van den Berg https://doi.org/10.1093/toxsci/50.2.206
  88. Chem. Biol. Interact v.115 High-affinity renal lead-binding proteins in environmentally-exposed humans Smith,D.R.;M.W.Kahng;B.Quintanilla-Vega;B.A.Fowler https://doi.org/10.1016/S0009-2797(98)00060-X
  89. Hum. Reprod. v.16 Reassessment of models used to test xenobiotics for oestrogenic potency is overdue Spearow,J.L.;M.Barkley https://doi.org/10.1093/humrep/16.5.1027
  90. A Natural History of Amphibians Stebbin,R.;N.Cohen
  91. Environ. Sci. Technol. v.35 Cytochrome P450 1A expression in midwater fishes:potential effects of chemical contaminants in remote oceanic zones Stegeman,J.J.;J.J.Schlezinger;J.E.Craddock;D.E.Tillitt https://doi.org/10.1021/es0012265
  92. Chemosphere v.46 Development of dioxin toxicity evaluation method in human milk by enzyme-linked immunosorbent assay-assay validation for human milk Sugawara,Y.;K.Saito;M.O.Gawa;S.Kobayashi;G.Shan;J.R.Sanborn;B.D.Hammock;H.Nakazawa;Y.Matsuki https://doi.org/10.1016/S0045-6535(01)00267-3
  93. Environ. Health Perspect v.103 no.SUP.7 Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment Sumpter,J.P.;S.Jobling
  94. Biochem. Biophys. Res. Commun. v.291 Serum bisphenol a concentrations showed gender differences, possibly linked to androgen levels Takeuchi,T.;O.Tsutsumi https://doi.org/10.1006/bbrc.2002.6407
  95. J. Biol. Chem. v.258 Induction of two immunochemically related rat liver cytochrome P-450 isozymes, cytochromes P-450c and P-450d, by structurally diverse xenobiotics Thomas,P.E.;L.M.Reik;D.E.Ryan;W.Levin
  96. Chem. Biol. Interact. v.20 no.141 Ah receptor and NF-kappaB interactions:mechanisms and physiological implications Tian,Y.;A.Rabson;M.Gallo
  97. Environ. Health. Perspect. v.110 Dichlorodiphenyltrichloroethane(DDT):ubiquity, persistence, and risks Turusov,V.;V.Rakitsky;L.Tomatis https://doi.org/10.1289/ehp.02110125
  98. Ann. N.Y. Acad. Sci. v.945 Proteomic approaches within the NCI early detection research network for the discovery and identification of cancer biomarkers Verma,M.;G.L.Wright;S.M.Hanash;R.Gopal-Srivastava;S.Srivastava https://doi.org/10.1111/j.1749-6632.2001.tb03870.x
  99. Toxicol. Appl. Pharmacol. v.90 Specific binding of polyhalogenated aromatic hydrocarbon inducers of cytochrome P-450d to the cytochrome and inhibition of its estradiol 2-hydroxylase activity Voorman,R.;S.D.Aust https://doi.org/10.1016/0041-008X(87)90307-3
  100. Pharmacol. Toxicol. Endocrinol. v.121 Avian forms of cytochrome P450 Walker,C.H. https://doi.org/10.1016/S0742-8413(98)10030-0
  101. Drug. Chem. Toxicol. v.24 Incorporation of endocrine disruption into chemical hazard scoring for pollution prevention and current list of endocrine disrupting chemicals Whaley,D.A.;D.Keyes;B.Khorrami https://doi.org/10.1081/DCT-100106265
  102. Int. J. Gynecol. Cancer v.12 Proteomics in cancer research Wu,W.;W.Hu;J.J.Kavanagh https://doi.org/10.1046/j.1525-1438.2002.01200.x
  103. Proteomics v.1 New approaches to proteomic analysis of breast cancer Wulfkuhle,J.D.;K.C.Mclean;C.P.Paweletz;D.C.Sgroi;T.B.Jrock;P.S.Steeg;E.F.Petricoin https://doi.org/10.1002/1615-9861(200110)1:10<1205::AID-PROT1205>3.0.CO;2-X
  104. Environ. Health. Perspect. v.106 no.SUP.2 Identification and assessment of endocrine disruptors: Iimitations of in vivo and in virto assays Zacharewski,T.
  105. Chemosphere v.40 Comparison of an enzyme-linked immunosorbent assay(ELISA) to gas chromatography(GC)-measurement of polychlorinated biphenyls(PCBs) in selected US fish extracts Zajicek,J.L.;D.E.Tillitt;T.R.Schwartz;C.J.Schmitt;R.O.Harrison https://doi.org/10.1016/S0045-6535(99)00310-0
  106. Toxicology v.92 An enzyme-linked immunosorbent assay(ELISA) specific for antibodies to TNP-LPS detects alterations in serum immunoglobulins and isotype switching in C57BL/6 and DBA/2 mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds Harper,N.;K.Connor;M.Steinberg;S.Safe https://doi.org/10.1016/0300-483X(94)90174-0
  107. Electrophoresis v.20 Proteomics in human disease: cancer, heart and infectious diseases Jungblut,P.R.;U.Zimmy-Arndt;E.Zeindl-Eberhart;J.Stulik;K.Koupilova;K.P.Pleissner;A.Otto;E.C.Muller;W.Sokolowska-Kohler;G.Grabher;G.Stoffler https://doi.org/10.1002/(SICI)1522-2683(19990701)20:10<2100::AID-ELPS2100>3.0.CO;2-D