DOI QR코드

DOI QR Code

Effect of Thermal Poling on the 1.55 μm Emission Characteristics of Er3+-doped Glasses

Er3+ 첨가 유리의 1.55μm 형광특성에 미치는 Thermal Poling의 영향

  • Lee, Tae-Hoon (Photonic Glasses Laboratory, Department of Materials Science and Engineering, Pohang University of Science and Technology) ;
  • Chung, Woon-Jin (Photonic Glasses Laboratory, Department of Materials Science and Engineering, Pohang University of Science and Technology) ;
  • Heo, Jong (Photonic Glasses Laboratory, Department of Materials Science and Engineering, Pohang University of Science and Technology)
  • 이태훈 (포항공과대학교 신소재공학과 광전자유리재료연구실) ;
  • 정운진 (포항공과대학교 신소재공학과 광전자유리재료연구실) ;
  • 허종 (포항공과대학교 신소재공학과 광전자유리재료연구실)
  • Published : 2003.05.01

Abstract

Effect of the thermal poling on the 1.55 fm emission spectra in various Er$^{3+}$ -doped glasses was investigated with a special attention on the changes in the values of FWHM(Full Width at Half Maximum) intensity. Tellurite glasses poled at 28$0^{\circ}C$ with an electric voltage of 4 kV resulted in an approximately 6% increase in FWHM values compared with their unpoled counterparts. On the other hand, values for glasses, such as aluminosilicate, sulfide and chalcohalide, either decreased or remained unchanged. The characteristic results from tellurite glasses are most probably due to the presence of lone-pair electrons in the TeO$_4$ hi-pyramidal units that form the main network structure of tellurite glasses.

1.55$\mu$m 파장대 광증폭용 재료의 이득 파장대역 증대를 목적으로 Er$^{3+}$ 첨가 유리에 대해 thermal poling이 형광스펙트럼 의 반가폭(full width at half maximum)에 미치는 영향을 분석하였다. 텔루라이트 유리(TeO$_2$-ZnO)의 경우 poling후 약 6%의 형광 반가폭 증가가 관찰된 반면 다른 유리에서는 감소하거나 변화가 없었다. 이와 같은 형광스펙트럼의 변화는 알려진 바와 같이 poling으로 인해 유리내에 생성된 전하 결핍층과 이러한 결핍층에 발생하는 잔류 정전기장 때문으로 판단된다. 실리케이트 등과 같은 다른 유리와는 달리 텔루라이트 유리에서만 Er$^{3+}$ 의 형광 반가폭이 증가한 것은 유리를 구성하고 있는 TeO$_4$에 존재하는 비공유 전자쌍과 밀접하게 관련되어 있을 것으로 추측된다.

Keywords

References

  1. Opt. Lett. v.23 Gain Characteristics of Tellurite-based Erbium-doped Fiber Amplifiers for 1.5㎛ Broadband Amplification Y.Ohishi;A.Mori;M.Yamada;H.Ono;Y.Nishida;K.Oikawa https://doi.org/10.1364/OL.23.000274
  2. J. Non-Cryst. Solids v.256-257 $Pr^{3+}$ Doped InF₃/GaF₃Based Fluoride Glass Fibers and Ga-Na-S Glass Fibers for Light Amplification Around 1.3㎛ K.Itoh;H.Yanagita;H.Tawarayama;K.Yamanaka;E.Ishikawa;K.Okada;H.Aoki;Y.Matsumoto;A.Shirakawa;Y.Matsuoka;H.Toratani https://doi.org/10.1016/S0022-3093(99)00319-1
  3. Electron. Lett. v.30 Highly Efficient 1.064㎛ Upconversion Pumped 1.47㎛ Thulium Doped Fluoride Fibre Laser R.M.Percival;D.Szebesta;J.R.Williams https://doi.org/10.1049/el:19940701
  4. Electron. Lett. v.33 Erbium-doped Tellurite Glass Fibre Laser and Amplifier A.Mory;Y.Ohishi;S.Sudo https://doi.org/10.1049/el:19970585
  5. Electron. Lett. v.33 Broadband and Gain-flattened Amplifier Composed of a 1.55㎛-band and a 1.58㎛-band Er-doped Fibre Amplifier in a Parallel Configuration M.Yamada;H.Ono;T.Kanamori;S.Sudo;Y.Ohishi https://doi.org/10.1049/el:19970455
  6. Erbium-doped Fiber Amplifiers: Principles and Applications E.Desurvire
  7. Lasers and Excited States of Rare Earths R.Reisfeld;C.K.Jorgensen
  8. Opt. Lett. v.16 Large Second-order Nonlinearty in Poled Fused Silica R.A.Myers;N.Mukherjee;S.R.J.Brueck https://doi.org/10.1364/OL.16.001732
  9. J. Lightwave Tech. v.15 Glass Fiber Poling and Applications P.G.Kazansky;P.S.J.Russel;H.Takebe https://doi.org/10.1109/50.618381
  10. Appl. Phys. Lett. v.74 Thermal Poling of Silica in Air and under Vacuum: The Influence of Charge Transport on Second Harmonic Generation V.Pruneri;F.Samoggia;G.Bonfrate;P.G.Kazansky;G.M.Yang https://doi.org/10.1063/1.123868
  11. J. Kor. Ceram. Soc. v.36 no.12 Induced Second Order Optical Nonlinearity in Thermally Poled Silica Glsses D.W.Shin
  12. J. Appl. Phys. v.83 Effect of Poling Temperature on Optical Second Harmonic Intensity of Sodium Zinc Tellurite Glsses A.Narazaki;K.Tanaka;K.Hirao;N.Soga https://doi.org/10.1063/1.367154
  13. J. Am. Ceram. Soc. v.83 $Pr^{3+} / Er^{3+}$ Codoped Ge-As-Ga-S Glasses as Dual-wavelength Fiber-optic Amplifiers for 1.31 and 1.55㎛ Windows S.H.Park;D.C.Lee;J.Heo https://doi.org/10.1111/j.1151-2916.2000.tb01370.x
  14. J. Non-Cryst. Solids v.298 Optimization of $Dy^{3+}$-doped Ge-Ga-As-S-CsBr Glass Composition and its 1.31㎛ Emission Properties Y.B.Shin;C.K.Yang;J.Heo https://doi.org/10.1016/S0022-3093(02)00946-8
  15. J. Appl. Phys. v.85 Induction and Relaxation of Optical Second-order Nonlinearity in Tellurite Glasses A.Narazaki;K.Tanaka;K.Hirao;N.Soga https://doi.org/10.1063/1.369500
  16. Jpn. J. Appl. Phys. v.32 Second Harmonic Generation in Poled Tellurite Glasses K.Tanaka;K.Kashima;K.Hirao;N.Soga https://doi.org/10.1143/JJAP.32.L843
  17. J. Non-Cryst. Solids v.185 Second Harmonic Generation in Electrically Poled Li₂O-Nb₂$O_{5}$-TeO₂Glasses K.Tanaka;K.Kashima;K.Hirao;N.Soga;A.Mito;H.Nasu https://doi.org/10.1016/0022-3093(94)00673-3