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ABSTRACT

We introduce a new estimator of the uncertainty of a jackknife estimate of standard error: the jack—
knife—after—jackknife (JAI). Using Monte Carlo simulation, we assess the accuracy of the JAJ in a
variety of settings defined by statistic of interest, data distribution, and sample size. For comparison,
we also assess the accuracy of the jackknife—after—bootstrap (JAB) estimate of the uncertainty of a
bootstrap standard error. We conclude that the JAJ provides a useful new supplement to Tukey's
jackknife, and the combination of jackknife and JAJ provides a useful alternative to the combination
of bootstrap and JAB.

1. INTRODUCTION

The bootstrap (Efron [1], Efron and Tibshirani [4]) and the jackknife (Quenouille
[11], Tukey [12]) are well known tools for estimating the standard errors of statis-
tics. They create artificial replicates by randomly resampling or sequentially de-
leting data values, réspectively, to simulate the sampling variability of a statistic.
Kunsch {6] and Liu and Singh [7] independently proposed the moving blocks boot-
strap and the moving blocks jackknife for dependent data. Park and Willemain
[9] introduced the threshold bootstrap and threshold jackknife for stationary and
weakly dependent time series. Park et al. [10] also established the asymptotic
unbiasedness and consistency of the threshold bootstrap and threshold jackknife
estimates. However, even though the bootstrap and jackknife estimates apply to a
wide range of statistics and data distributions, they inevitably suffer from sam-
pling variability. The bootstrap estimates are subject to an additional resampling
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variability.

In this paper, we focus on assessing the accuracy of bootstrap and jackknife
estimates of standard error for statistics computed from independent and identi-
cally distributed (i.i.d.) data. For estimates computed with the bootstrap, the
jackknife-after-bootstrap (JAB) (Efron [2]) can be used to assess the variance of
the estimated standard errors. For estimates computed with the jackknife, we
propose a new approach, the jackknife-after-jackknife (JAJ).

2. THE JACKKNIFE-AFTER-BOOTSTRAP

The JAB method uses Tukey’s jackknife to estimate the variance of the bootstrap
estimate of standard error. One of its virtues is that the JAB estimate can be ob-
tained by re-using the same bootstrap replicates that were used to compute the
bootstrap estimate of standard error.

Suppose that X ={X;, X,, -, X,,} are 1i.d. data from an unknown distribu-

tion F. Let & be the statistic of interest and X" = {X7, X5,---, X} be the bootstrap

samples of size n, which are randomly drawn with replacement from X ={X,,
X, -+, X,,} . The bootstrap replicates of the statistic 9 are 6; = 8(X;,--,X}) for

i =1,---,B, and the bootstrap estimate of the standard error of 8 is defined to be
Se*(é*)_ ]_ i(é*_é*)z 1/2 A*_li . (2 1)
B-15 "' ’ BE o )

Now, the JAB estimate of the variance of se’( é*) is computed as follows:

(1) Compute se*(é*)(j), j=1,--n, the j‘h jackknife replicate of se*(é*), that is,
the sample standard deviation of bootstrap replicates éf computed over the
subset of bootstrap samples that do not contain X;.

(2) The JAB variance estimate of se” (8") is defined to be

Var,p(se’ (8) = (n -1)2 (2.2)

j=1

(Se (9 )(]) se (9 )(.))2
n

£ Ak L4 e
where se (0 ), = Z ( )(])

J=1

. Efron and Tibshirani [4] and Hill et al. [5]
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showed that the JAB usually overestimates the true variance of bootstrap esti-
mates unless the number of bootstrap replicates B is quite large.

3. THE JACKKNIFE-AFTER-JACKKNIFE

Tukey’s jackknife was originally developed to estimate the standard error of a
statistic. We propose the JAJ method to assess the accuracy of the jackknife esti-
mate of standard error. The JAJ was inspired by Mosteller and Tukey’s [8] de-
scription of “two simultanecus uses of leave-out-one” and by the iterated boot-
strap. (Indeed, the JAJ could be called the iterated jackknife.) Once Tukey’s jack-
knife estimate is computed, we repeat the jackknife on the original data excluding
one of the data points. While the jackknife works by deleting a single datum, the
JAJ works by deleting pairs of data values.

The algorithm for computing both the jackknife estimate of the standard er-

ror of © =6(X) and its JAJ variance estimate is as follows:
(1) Calculate the : ** jackknife replicate of the statistic & =0(X)
8 = O(Xy) fori=1,-,n (3.1)

where X;, is defined to be X ={X), X, -, X,;} with the i'" data point removed.

(2) The jackknife estimate of the standard error of 8 is

A A 1/2

A o (e ) —© . )2 A 1 &4

sejack( 0)= {(n - I)ZL’Z()"‘ ; e(.) = ;Ze(i). 3.2)
=1 i=1

(3) Define se jack(é)(i) to be the jackknife estimate of the standard error of 0 with

the i data point removed

A A 1/2

A ) i (ei‘ —Gi, )2 .

€0 (g =1(n-2) > 2@ 76 L i=1..n _ (3.3)
=l =i n-1

where é(ij) =é(X(ij)), X;;) denotes X with the i" and j* data points deleted,

A 1 &4 . A -
and O,y = — ‘ Z O - For instance, if § is equal to the sample mean X,

—1 T
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then

A nX,-(X;+X) . nX. - X
Oy =———5—» O ==

R n (nX,-X;+X;-nX;)>?
s€.oen () = Bliad J

Jack =20 121 (n-2)(n-1)°
j#l

(4) The JAJ variance of sej,.,(0) is defined to be

A o S€ ige éi—se-ac 6)(0))?
VarJAJ(sejack(e))=(n_l)z( jack(©)G) —5€ jack(O)e)

i=1 n

(3.4)

A n 5€ 01 (O)
where se j5,.,(O) ) = Z‘i.__facn_(i )
1=

4. EMPIRICAL EVALUATION

In this section, we report the results of Monte Carlo'experiments to assess the

accuracy of the JAB variance estimate of bootstrap standard error Var j,z(se”
(6")in Eq. (2.2) and the JAJ variance estimate of jackknife standard error
Var ;.5 (sejqck( é)) in Eq. (8.4). We found it convenient to express the results not

as variances but as standard errors, since the latter are in the same scale as the
statistics they describe.

We considered three factors in our experimental design: the statistic of
interest, the underlying distribution, and the sample size. We studied two

~ _ n . .
statistics 8§, the sample mean Xn=ZXi/n and sample standard deviation
i=1

n —

S= ‘/Z (X;-X,)? /n-1. We drew samples from two ii.d. distributions: the
i-1

standard normal (a symmetric case) and unit exponential (an asymmetric case).

We generated samples of size n = 4 (the smallest possible sample size for applying

the JAJ to the sample/ standard deviation), n = 20 (a size for which the JAJ and

JAB have equal computing costs), n = 100, and n = 200.
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Given an ii.d sample of size n, we first computed the bootstrap estimate

(se*(é*)) and its variance estimate VarJAB(se*(é*)) ; then we computed the
jackknife estimate (sejack(é)) and its variance estimate Var,;(sejqe( 6). In

each replication of the experiment, all computations used the same sample data.
We repeated this experiment N = 5,000 times independently. We estimated

the true values of the square roots of VarJAB(se*(é*)) and Vary, J(sejack(é)) by

the sample standard deviations of the 5,000 estimates of (se*( 8")) and (se jack(é)),

respectively. We assessed accuracy using bias, sample standard deviation, and
their combination in the form of the root mean squared error (RMSE).
Besides accuracy, an important issue is the computational effort required for

the JAB and JAJ. For a sample of size n, the JAJ requires n evaluations of & to

compute (se jack(é)) and n(n-1) evaluations to compute Var;,;(se g ( 6)), making

a total of n? evaluations of §. When n = 20, this amounts to 400 evaluations of the
statistic. Accordingly, we select B = 400 bootstrap replications to match the com-
putational effort in this case. When n = 4, the JAJ requires only 12 evaluations,
but we kept B =400 to insure good performance from the JAB.

4.1 Performance Comparison of Bootstrap and Jackknife .

While our main focus is on assessing uncertainty in estimated standard errors, it
is appropriate to begin with a discussion of the standard error estimates them-
selves. We conducted a preliminary simulation study of the performance of

(se’(8")) and (se iack ©)) for small sample sizes.

Table 1 shows the experimental results. Columns (1)-(3) define the eight sce-
narios, defined by statistic of interest, data distribution, and sample size. Col-
umns (4)-(5) hold the Monte Carlo estimates of the true values of the mean and
standard error, respectively, of the statistic. Columns (6) - (10) assess the quality

of the point estimates of standard error, (se (")) and (5€jger ( 9)). The values in

column (7) should, ideally, match the values in column (5). The sample standard
deviation in column (8) is the primary focus of our paper; it is a performance
measure for the point estimates of standard error. The bias estimate in column
(9) is computed as column (7) minus column (5). The RMSE estimate in column
(10) is the square root of the sum of the squares of columns (8) and (9).

As expected, larger sample size reduced the estimated standard deviations,
biases and RMSEs in columns (8)-(10). In every scenario, the jackknife standard
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error was less biased but also less stable than the bootstrap standard error. The
RMSE combined both bias and variability into a single summary statistic; by this
measure, the bootstrap and jackknife estimates were about equally accurate, with
a slight advantage to the bootstrap. However, for small samples the jackknife
requires less computation.

Table 1. Experimental assessment of point estimates of standard error

{1 2 6] 4) &) )] ) ® )] (10)
L. Sample | Sample | Sample SE Sample | Sample A
Statistic| Dat. B RMSE
atistie ata Size Avg SD Method Avg SD 18
knif 461 | 0. -0. .
. 0000 | os0s | Jackknife | 0.461 | 0.104 | -0.041 | 0.109
: Bootstrap | 0.399 | 0.169 | -0.103 | 0.198
Normal Jackknife | 0.221 | 0.036 | 0001 | 0.036
20 .0.001 | 0.220 | cackenEe | b : SV
Bootstrap 0.216 0.036 -0.004 0.037
Mean Jackknife | 0.416 | 0.270 | -0.080 | 0.282
4 0.989 | 0.496 | Soonre B : e :
. Bootstrap | 0.360 | 0.235 | -0.136 | 0.271
Xpo .
) knif 212 | o 0. .
% 0004 | 0.99q | Jackknife | 0.2 0.065 | -0.012 | 0.066
Bootstrap | 0.207 | 0.064 | -0.017 | 0.066
Jackknife | 0.405 | 0236 | 0.013 | 0.236
4 0921 | 0.392
Bootstrap | 0.299 | 0.136 | -0.093 | 0.165
Normal. Jackknife | 0.160 | 0.047 | -0.001 | 0.047
20 0986 | 0161 | cAenHe Y : e :
Bootstrap | 0.144 | 0.038 | -0.017 | 0.041
Std Dev Jackknife | 0.423 | 0392 | -0.125 | 0.411
4 0.839 | 0.54g | cacEEREE P : e '
. Bootstrap | 0.295 | 0.225 | -0.253 | 0.339
Xpo
Jackknife | 0.243 | 0.161 | -0.043 | 0.167
20 0955 | 0.286
Bootstrap | 0.204 | 0.117 | -0.083 | 0.144

Note 1: Results based on N = 5000 independent replications.

Note 2: Bootstrap replications B = 400 to allow for same number of statistic evaluations in JAJ and
JAB.

Note 3: Bootstrap and jackknife applied to same datasets.

4.2 Performance Comparison of Jackknife-after—Bootstrap (JAB) and Jack-
knife-after-dackknife (JAJ) -

Now we turn to estimating the standard error of the estimated standard error.
Table 2 shows the experimental results. Again, columns (1)-(3) define the scenar-
10s. Columns (4)-(8) assess the quality of the estimates of the standard errors of
the standard errors. The values in column (5) approximate the true standard er-
rors of the standard errors. (For n = 4 and n = 20, they can be compared to the
corresponding values in column (8) of Table 1 to gauge the degree of sampling
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variability in our results). Columns (6)-(8) assess the performance of the JAJ and
JAB estimators.

Table 2. Experimental assessment of standard errors of estimated standard errors

(0)) 2) (6] @ (5) (6) (7) (G)]
Sample True Sample .
Statisti Dat Method Bias RMSE
anshie ata Size ° SE(SE) SD !

. JAJ 0.180 0.127 0.032 0.131
JAB 0.156 0.090 -0.005 0.090
20 ‘JAJ 0.035 0.019 0.002 0.011
JAB © 0.035 0.014 0.020 0.024

Normal
100 JAJ 0.007 0.001 0.000 0.001
JAB 0.008 0.006 0.038 0.039
200 JAJ 0.004 0.000 0.000 0.000
JAB 0.004 0.004 0.042 0.042

Mean
. JAJ 0.274 0.229 -0.028 0.230
JAB 0.237 0.161 -0.063 0.173
20 JAJ 0.064 0.038 -0.008 0.039
JAB 0.063 0.037 0.006 0.038
Expo

100 JAJ 0.014 0.005 -0.001 0.005
JAB 0.014 0.009 0.034 10.035
200 JAJ 0.007 0.002 0.000 0.002
JAB 0.007 0.007 0.039 0.040
4 JAJ 0.220 0.160 0.024 0.161
JAB 0.128 0.074 -0.010 0.075
2 JAJ 0.045 0.033 0.000 0.034
JAB 0.037 0.023 0.009 ' 0.025

Normal
100 JAJ 0.010 0.005 -0.001 0.005
JAB 0.009 0.006 0.024 0.025
200 JAJ 0.005 0.002 0.000 0.002
Std Dov JAB 0.005 0.004 0.028 0.028
A JAT 0.405 0.312 -0.092 0.325
JAB 0.231 0.145 -0.084 0.168
20 JAJ 0.160 0.139 -0.036 0.144
JAB 0.116 0.090 -0.020 0.093

Expo

100 JAJ 0.051 0.040 -0.013 0.042
JAB 0.043 0.033 0.021 0.039
200 JAJ 0.031 0.023 -0.008 0.024
JAB 0.028 0.024 0.036 0.043

Note 1: Results based on N = 5000 independent replications.
Note 2: Bootstrap replications B = 400.
Note 3: Bootstrap and jackknife applied to same datasets.
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One immediate conclusion from Table 2 is that it is difficult to assess the
standard error of a standard error, no matter whether one uses the jackknife/JAJ
combination or the bootstrap/JAB. The RMSEs in column (8) are substantial rela-
tive to the true values in column (5); this conclusion holds even for the largest
sample sizes in Table 2. A second conclusion is that the JAJ estimate, like the
jackknife itself, tends to have more of a problem with variability (column (6)) than
with bias (column (7)); the reverse tends to be true for the JAB estimate. A third
conclusion is that, as expected, larger sample sizes always improve the perfor-
mance of the JAJ. Curiously, this is not the case for the JAB: while the variability
of JAB estimates (column (6)) decreases with sample size, the bias does not.
Efron and Tibshirani [4] displayed data with the same behavior, though they did
not remark on it. They did conclude, however, that increasing the number of boot-
strap replicates B would generally reduce the bias. Finally, it 1s clear that the
quality of estimates varies with the scenario. Generally, RMSEs are smaller when
the statistic of interest is the mean rather than the standard deviation, and when
the data have a normal rather than exponential distribution.

5. SUMMARY AND CONCLUSIONS

We introduced the jackknife-after-jackknife (JAJ) method for assessing the accu-
racy of standard errors estimated by Tukey’s jackknife for i.i.d. data. The combi-
nation of jackknife and JAJ provides a new alternative to the combination'of
bootstrap and jackknife-after-bootstrap (JAB).

Monte-Carlo simulations show that it is difficult to accurately estimate the
uncertainty of an estimated standard error, no matter which method is used. For
both the JAJ and JAB, RMSEs are of roughly the same magnitude as the values
being estimated. The JAJ RMSEs derive more from variability than bias, while
the reverse tends to be true for the JAB. For the JAJ, larger sample sizes lead to
smaller RMSEs, though the RMSE relative to the true standard error of the stan-
dard error remains substantial for samples up to n = 200 observations. For the
JAB, larger sample sizes reduce variability but not bias, so values of B greater
than the 400 used here would be required for good performance. The performance
of both the JAJ and JAB is better for normal data than exponential, and better
when the statistic of interest is the mean than the standard deviation.

Our simulation results are consistent with those of Hill et al. {5]. They found
that the JAB usually overestimated the variability of the bootstrap standard er-
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ror by a substantial amount, though the error declined with increasing numbers
of bootstrap replicates B. Efron and Tibshirani [4] also noted that the JAB meth-
od is only reliable when B is sufficiently large. However, how large B should be
remains uncertain. For instance, in our experiments, we used B = 400; in limited
experiments not reported here using B = 1000, the JAB still performed poorly
compared to the JAJ for larger sample sizes.

When both approaches have similar accuracy, the choice between jackknife
and bootstrap might be made on the basis of computational cost. For n data val-
ues, the jackknife/JAJ combination requires n? evaluations of the statistic, while
the bootstrap/JAB combination requires B evaluations. For simple statistics such
as the mean and standard deviation examined here, the cost of thousands of extra
computations of the statistic may be insignifiéant. However, in some settings,
each evaluation of the statistic can be very costly; as when the statistic is the re-
sult of a Monte Carlo simulation of a complex system or solid modelling of a com-
plicated manufactured assembly. For samples of size roughly 20 to 30, the JAJ is
less costly to compute than the JAB. For larger sample sizes, the JAB should be
used with a larger number of bootstrap replications than studied here, since sub-
stantial biases remain when B = 400 and n > 100.

The choice between bootstrap and jackknife estimates of standard error is
now more balanced, in that the JAJ can provide good estimates of the uncertainty
in jackknife standard errors, just as the JAB does for bootstrap standard errors.
This expanded choice should be an advantage to the applied statistician faced
with the need for computational inference.
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