DOI QR코드

DOI QR Code

Identification and Characterization of New Copia-like Retrotransposon Osr1 in Rice

  • Lee, Yong-Hwan (Department of Molecular Biology, College of Life Science, Sejong University) ;
  • Jwa, Nam-Soo (Department of Molecular Biology, College of Life Science, Sejong University) ;
  • Park, Sook-Young (School of Agricultural Biotechnology, Seoul National University) ;
  • Park, Chan-Ho (School of Agricultural Biotechnology, Seoul National University) ;
  • Han, Seong-Sook (Plant Pathology Division, National Institute of Agriculture Science and Technology)
  • Published : 2003.02.01

Abstract

An insertion sequence identified as a solo long terminal repeat (LTR) of a new rice copia-like retrotransposon was detected in the ORE of the Pi-b gene from the rice cv. Nipponbare, and was designated as Osr1. Osr1 consists of a 6386 bp nucleotide sequence including 965 bp LTRs on both ends with an 82% nucleotide sequence identity to the wheat Tarl retrotransposon on reverse transcriptase. Nucleotide divergence was noted among the individual LTRs, as well as the coding region of Osr1. Various restriction fragment length polymorphism (RFLP) of LTR were detected in indica cultivars, whereas, only a few could be detected in the japonica cultivars. The population of Osr1 is lower in the wild-type rice compared with that in the domesticated cultivars. The insertion of LTR sequence in the h-b gene in the susceptible cultivar suggested that retro-tyansposon-mediated insertional mutation might play an important role in the resistance breakdown, as well as in the evolution of resistance genes in rice.

Keywords

References

  1. Efron, G. and Gong, E 1983. A leisurely look at the bootstrap, the jackknife and cross-validation. Am. Stat. 37:36-48 https://doi.org/10.2307/2685844
  2. Finnegan, D. J. 1989. Eukaryotic transposable elements and genome evolution. Trends in Genet. 5: 103-107 https://doi.org/10.1016/0168-9525(89)90039-5
  3. Flavell, A J., Dunbar, E., Anderson, R., Pearce, S. R., Hartley, R. and Kumar, A. 1992. Tyl-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res. 20:3639-3644 https://doi.org/10.1093/nar/20.14.3639
  4. Flor, H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275-296 https://doi.org/10.1146/annurev.py.09.090171.001423
  5. Grandbastien, M. A., Spielmann, A. and Caboche, M. 1989. TntI, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337:376-380 https://doi.org/10.1038/337376a0
  6. Hirochika, H. 1993. Activation of tobacco retrotransposons during tissue culture. EMBO J. 12:2521-2528
  7. Hirochika, H. 1997. Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol. Biol. 35:231-240 https://doi.org/10.1023/A:1005774705893
  8. Hirochika, H., Sugimoto, K, Otsuki, Y., Tsugawa, H. and Kanda, M. 1996. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 93:7783-7788 https://doi.org/10.1073/pnas.93.15.7783
  9. Jwa, N. S. and Lee, Y. H. 2000a. Insertional mutation of the rice blast resistance gene, Pi-b, by long terminal repeat of a retrotransposon. Plant Pathol. J. 16:105-109
  10. Jwa, N. S., Park, S. G., Park, C. H., Kim, S. O., Ahn, I.P., Park, S. Y., Yoon, C. H. and Lee, Y. H. 2000b. Cloning and expression of a rice cDNA encoding a Lls1 homologue of Maize. Plant Pathol. J. 16:151-155
  11. Matsuoka, Y. and Tsunewaki, K. 1997. Presence of wheat retrotransposons in Gramineae species and the origin of wheat retrotransposon families. Genes Genet. Syst. 72:335-343 https://doi.org/10.1266/ggs.72.335
  12. McClintock, B. 1984. The significance of responses of the genome to challenge. Science 226:792-801 https://doi.org/10.1126/science.15739260
  13. Nakajima, R, Noma, K, Ohtsubo, H. and Ohtsubo, E. 1996. Identification and characterization of two tandem repeat sequences (TrsB and TrsC) and a retrotransposon (RIREl) as genome-general sequences in rice. Genes Genet. Syst. 71:373-382 https://doi.org/10.1266/ggs.71.373
  14. Noma, K., Nakajima, R, Ohtsubo, H. and Ohtsubo, E. 1997. RIREl, a retrotransposon from wild rice Oryza australiensis. Genes Genet. Syst. 72: 131-140 https://doi.org/10.1266/ggs.72.131
  15. Pautot, V., Holzer, F. M., Reisch, B. and Walling, L. L. 1993. Leucine aminopeptidase: an inducible component of the defense response in Lycopersicon esculentum (tomato). Proc. Natl. Acad. Sci. USA 90:9906-9910 https://doi.org/10.1073/pnas.90.21.9906
  16. Pouteau, S., Grandbastien, M. A. and Bpccara, M. 1994. Microbial elicitors of plant defense responses activate transcription of a retrotransposon. Plant J. 5:535-542 https://doi.org/10.1046/j.1365-313X.1994.5040535.x
  17. Rogers, S. O. and Bendich, A J. 1985. Extraction of DNA milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. BioI. 5:69-76 https://doi.org/10.1007/BF00020088
  18. Rohlf, F. 1992. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System. Version 1.7. Exter Software, New York
  19. Sambrook, J., Frisch, E. F. and Maniatis, T. 1989. Molecularcloning. A laboratory Mannual 3rd edn. Cold Spring Habor Laboratory Press, Cold Spring Harbor
  20. Sneath, P. H. A and Sokal, R. R. 1973. Numerical Taxonomy: The Principle and Practice of Numerical Classification. W.H. Freeman and Co., San Francisco
  21. Takeda, S., Sugimoto, K., Otsuki, H. and Hirochika, H. 1998. Transcriptional activation of the tobacco retrotransposon Ttol by wounding and methyl jasmonate. Plant Mol. Biol. 36:365-376 https://doi.org/10.1023/A:1005911413528
  22. Vaughan, D. H. 1994. The relationship between the genus Oryza and other grasses. In The Wild Relatives ofRice, pp. 3-6. International Rice Research Institute. Philippines
  23. Vernhettes, S., Grandbastien, M. A and Casacuberta, J. M. 1997. In vivo characterization of transcriptional regulatory sequences involved in the defence-associated expression of the tobacco retrotransposon Tntl. Plant Mol. BioI. 35:673-679 https://doi.org/10.1023/A:1005826605598
  24. Voytas, D. F., Cummings, M. P., Koniczny, A., Ausubel, F. M. and Rodermel, S. R. 1992. Copia-like retrotransposons are ubiquitous among plants. Proc. Natl. Acad. Sci. USA 89:7124-7128 https://doi.org/10.1073/pnas.89.15.7124
  25. Wang, S., Zhang, Q., Maughan, P. J. and Saghai, M. A. 1997. Copia-like retrotransposons in rice: sequence heterogeneity, species distribution and chromosomal locations. Plant Mol. BioI. 33:1051-1058 https://doi.org/10.1023/A:1005715118851
  26. Wang, Z. X., Yano, M., Yamanouchi, U., Iwamoto, M., Monna, L., Hayasaka, H., Katayose, Y. and Sasaki, T. 1999a. The Pi-b gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J. 19:55-64 https://doi.org/10.1046/j.1365-313X.1999.00498.x
  27. Wang, S., Liu, N., Peng, K. and Zhang, Q. 1999b. The distribution and copy number of copia-like retrotransposons in rice (Oryza sativa L.) and their implications in the organization and evolution of the rice genome. Proc. Natl. Acad. Sci. USA 96:6824-6828 https://doi.org/10.1073/pnas.96.12.6824
  28. Weil, C. F. and Wessler, S. R. 1990. The effects of plant transposable elements insertion on transcription initiation and RNA processing. Ann Rev Plant Physiol. Plant Mol. Biol. 41 :527-552 https://doi.org/10.1146/annurev.pp.41.060190.002523
  29. Wessler, S. R., Bureau, T. E. and White, S. E. 1995. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Current Opinion of Genet. and Develop. 5:814-821 https://doi.org/10.1016/0959-437X(95)80016-X
  30. Xiong, Y. and Eickbush, T. H. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9:3353-3362
  31. Yokoo, M., Kikuch, F., Fujimaki, H. and Nagai, K. 1978. Breeding of blast resistant lines (BL-l to 7) from indica-japonica crosses of rice. Jpn. J. Breed. 28:359-385 https://doi.org/10.1270/jsbbs1951.28.359

Cited by

  1. Genetic diversity of Ralstonia solanacearum strains from Mexico associated with Moko disease 2017, https://doi.org/10.1007/s10658-017-1228-3
  2. Occurrence ofRalstonia solanacearumRace 2 Biovar 1 Associated with Moko Disease of Banana (Musa paradisiacacv. Nipah) in Malaysia vol.162, pp.10, 2014, https://doi.org/10.1111/jph.12233
  3. Diverse members of theRalstonia solanacearumspecies complex cause bacterial wilts of banana vol.35, pp.2, 2006, https://doi.org/10.1071/AP05105