중력이상을 이용한 한반도 모호먼 추출에 관한 연구

김정호1, 조진홍2, 김원건3, 민경덕4, 황재혁5, 이주수2, 박찬홍3, 권재현1, 황종선4
1서울대학교 지구물리공학과, 2한국지질자원연구원, 3방용정보통신 Mobile/GIS 기술팀
4인천대학교 지구시스템과학과, 5한국해양연구원 해양환경기후연구부

Extraction of Moho Undulation of the Korean Peninsula from Gravity Anomalies

Jeong Woo Kim1*, Jin Dong Cho2, Won Kyun Kim3, Kyung Duck Min4, Jae Ha Hwang2, Youn Soo Lee2, Chan Hong Park5, Jay Hyoun Kwon3 and Jong Sun Hwang4
1Dept. of Geoinformation Engineering, Sejong University, 2Korea Institute of Geoscience & Mineral Resources
3Mobile/GIS Technology Support Team, Sangyung Information & Communications Corp.,
5Dept. of Earth System Science, Yonsei University

We estimated the Moho depth of Korean Peninsula from gravity anomalies and digital elevation model. The satellite radar altimetry-derived global free-air gravity model was used to ensure the homogeneity in both data and frequency domains of the original data. Two different methods were implemented to calculate the Moho depth; the wavenumber correlation analysis (Kim et al., 2000a) and the power spectrum analysis. The former method calculates depth-to-the-Moho by correlating topographic gravity effect with free-air gravity anomaly in the wavenumber domain under the assumption that the study area is not isostatically compensated. The latter one, on the other hand, considers the different density layers (i.e., Conrad and Moho), using complete Bouguer gravity anomaly in the Frequency domain of the Fourier transform. The correlation coefficient of the two Moho model is 0.53, and methodology and numerical error are mainly responsible for the mismatch between the two models. In order to integrate the two independently-estimated models, we applied least-squares adjustment using the differentiated depth. The resultant model has mean and standard deviation Moho depths of 32.0 km and 2.5 km with (min, max) depths of (20.3, 36.6) km. Although this result does not include any topographic gravity effect, however, the validity of isostasy and the role of local stress field in the study area should be further studied.

Key words: Moho, Korean Peninsula, gravity anomalies, wavenumber correlation analysis, power spectrum analysis, Moho integration by least-squares method

중력이상 및 수지고도모델을 이용하여 한반도 모호먼 심도를 추출하였다. 중력이상값은 인공위성고도센서 관측값을 주로 이용한 전산구 모델로 이용하여 레이타임의 반만 아니라 주파수영역에서도 자료의 균일성을 확보하였다. 모호먼 추출은 파동수대비법 및 후리어규수를 이용한 파워스펙트럼분석법을 이용하였다. 전자는 지각구형을 설계하고, 지형에 의한 중력이상과 레이타임 중력이상을 파동수영역에서 대비하여 모호먼의 심도를 계산하는 방법이고, 후자는 완 전부우중 중력이상으로부터 후리어변환을 이용하여 지하 모호먼 변동의 심도를 계산하는 방법이다. 이 두 모호먼은 서로 0,53의 비교적 낮은 상관관계를 갖고 있으며, 이는 모호먼 산출의 방법론적인 차이 및 계산상의 오차인 것으로 사료된다. 이렇게 두 가지 독립적인 방법으로 추출된 모호먼을 하나로 통합하기 위한 방법으로, 두 모호먼의 차이를 계산한 후, 이를 최소자승법을 이용, 두 모호먼을 보정하였다. 추출된 한반도의 최종 모호먼의 평균심도는 32.0 km, 표준편차는 2.5 km이며, 최소 및 최대 심도는 각각 20.3, 36.6 km로 나타났다. 이 결과 지형에 의한 중력이상과 파동수대비법에 의해 계측된 결과에 대한 한반도의 지각이 별도로 지정된 내부에 있어서 지각기형성의 기원이 얼마나 타당성을 있는가, 혹은 국부적인 중력물에 의한 한반도의 지각이 과연 얼마나 지지되고 있는가 하는 것에 대한 추가적인 연구가 필요하다.

주요어: 한반도 모호먼, 중력이상, 파동수대비법, 파워스펙트럼분석, 최소자승에 의한 모호먼분석

*Corresponding author: jwkim@sejong.ac.kr
1. 서언

전층했듯이 중력이상성을 이용한 심부 지구구조 연구에 있어서 가장 중요한 현 중력성상의 절차가 있으며, 우선 정량적 심부 구조를 다루는 통신 연구자역 및 주변을 포함하는 광범위한 면적의 중력이상성을 이용하여 아리랑 지역의 중력성상등을 서로 다른 탐사결과와의 조합결과를 이용한 지구주변부 및 공간 분포가 의심되어야 한다. 동시에, 자료 취득 시간, 조사의 목적 및 이에 따른 탐사방법이 서로 다른 결과를 모아보고적으로 합성할 때 흔히 나타나는 탐사 경계면의 데이터 차이가 거래지치지하여, 해상성 면적의 선의 측정 및 흐름된 자료처리에 의한 측량 오류 (track-line noise) 등이 최소화되어야 하므로부터 용어로 심부 구조의 해석이 가능하다(Kim, 1996; Kim et al., 1998).

본 연구에서는 이러한 문제들을 고려하여 전자위성 중력성상 및 수중고도센서(DEM, Digital Elevation Model)을 사용하여 한반도의 모호면의 기측을 추출하였다(Fig. 2 참조). 본 연구에 사용한 후이칭의 (free-air) 중력성상 값은 Sandwell and Smith(1997)의 모델로부터 계산되었으며, 이는 Geosat, ERS1 등의 인공위성 레이다고 제(nadar altimeter) 관측값 및 지고도 탐사자료를 사용하여 계산된 고도에의 전자위성 모델이다. 수중고도센서로는 Sandwell의 2번 간격자료를 이용하였다(http://topex.ucsd.edu/cgi-bin/get_data.cgi).

본 연구에서의 두 가지 방법을 이용하여 모호면의 기측을 계산하였다. 하나는 중력규산을 정량으로 지형,로부터의 중력이상값과의 스펙트럼 대비를 이용한 것이고, 다른 하나는 완전부문법(complete Bouguer) 중력이상으로부터 후이칭(Fourier transform)을 이용한 것이다. 전자는 지각규산(isostatical compensation)을 전자로으로 Kim et al.(2000)에 의해 계산된 방법이며 후자는 지각 불변변환의 심도를 계산하는 일반적인 방법이다. 따라서 본 연구에서는 두 가지 독립적인 방법으로 추출된 모호면으로부터 하나의 모호면을 산출하기 위한 하나의 방법으로, 우선 두 모호면의 차 이를 계산한 후, 최소자승법(least-squares method)을 적용하여 두 모호면을 보정하여 한반도의 모호면을 추정하였다. 보정에 따른 데이터 채굴이 인한 차이는 기존 연구의 통계값을 이용하여 조정하였다.

2. 기존 연구 결과

지금까지 모호면을 포함하는 한반도 지역의 심부 구조에 관한 연구는 주로 중력이상성을 이용하여 이루어졌고, 1970년대에는 대부분 본격적인 연구결과가 발표되었다가, 이 가운데 본 연구와 관련된 것은 네 개의 연구 결과를 간략히 고찰하고자 한다.

심윤택(1971)은 Woolard(1969) 및 Kumagai(1953)의 자료를 이용하여 한반도 전체의 모호면의 심도를 연구하였다. 본 연구에서는 그 결과를 GIS 기술을 적용 수차화 하였으며 그 결과는 Fig. 1A와 같다. 우선 한반도에서 모호면까지의 평균 깊이는 28.2 km이고, 최대 및 최소 심도는 각각 38.7와 28.5 km, 표준편차는 2.2 km이다. 전반적으로 이 결과는 한반도의 지표지형과 매우 잘 일치하는 결과를 보이며, 이는 연구에 사용한 중력이상에서 지표지형에 의한 효과가 충분히 제거되었음을 보인 것으로 사료된다.

Kwon and Yang(1985)는 USAMSFE(1963) 자료를 이용하여 한반도 남부(남한)의 지각구조 및 지각 규산에 대해 연구하였고, 그 결과는 Fig. 1B에 도시화하였고, 이에 따르면 남한에서 지각의 평균 심도는 32.3 km이고, 최대 및 최소 심도는 각각 38.2와 26.7 km, 표준편차는 2.8 km이다. 전체적인 모호면의 양상은 심윤택(1971)과 유사함을 보인다.

최성광(1986)은 한반도 남부의 중력이상을 연구하였고 결과의 하나로서 모호면의 심도를 제시하였고, Fig. 1C는 그 결과로 지각의 평균 심도는 35.2 km, 최대 및 최소 심도는 각각 41.2와 28.6 km, 표준편차는 1.2 km이다. 이를 Kwon and Yang(1985)의 결과와 비교해 보면, 모호면의 평균심도는 약 3 km 정도
Fig. 1. Moho undulations of the Korean Peninsula estimated by (A) Sim(1971), (B) Kwon and Yang(1985), (C) Choi(1986), and (D) Pak et al.(1996).

같게 나타난다.
북한의 Pak et al.(1996) 등은 중력이상을 분석하여 한반도 전역 및 동해 일부를 포함하는 지역에 대해 지각의 두께를 계산하였고, 그 결과는 Fig. 1D에 도시되어 있다. 이에 따르면 한반도 지각의 평균 심도는 31.2 km이고, 최대 및 최소 심도는 각각 38.4와
26.2 km, 표준편차는 2.7 km이다. 주변해역은 제외한 욕망의 결과를 함께방정식(1971)의 결과와 비교해보면 모호면의 평균심도가 약 1.7 km 정도 크게 나타나고, 표준편차는 약 23% 높게 나타난다.

이번에 한반도 남부 및 남해안 일부의 중력지표를 측정적으로 분석한 Kim(1979)은 지각의 평균심도를 26 km로 해석하였고, 지각균형은 연구한 Lee(1979), 그리고 지각심도를 30 km로 발표한 Tsohbo(1983) 등
의 연구가 있으나 본 연구에서는 자세한 고찰을 생략하였다.

결과적으로 기존 연구에 의하면, 중력이상에 의한 한반도 지각의 평균심도는 31~35 km 정도이고, 최대 38 km, 최소 26 km 정도를 보이고 있고, 한반도의 지
형에 의한 특성으로 지각에 잘 반영되고 있음을 알 수
있다. 다시 말해 기존 연구에서는 모호면의 모양에 사용
한 중력이상 값에 지표지형에 의한 중력 값이 포함된
이를 가능성을 사차하고, 후에에서의 파워스택트
럼의 방법론적 문제점을 보여준다. 이들의 통계는
Table 1에 요약되어 있으며, 본 연구에서는 이들의 통
계와 본 연구의 중간 결과를 참고로 하여 최종모델을
구하였다.

3. 자료처리

3.1. 한반도 모호면 추출

일반적으로 중력이상을 이용한 모호면추출에 관한
연구는 후괴에 변환의 파워스택트림을 이용한 방법을
이용한다. 그러나 Kim et al.(2000a)는 중력이상과 지
형의 상관관계를 이용하여 모호면을 계산하는 연구 결
과를 발표하였는데, 이는 지각균형적으로 완전한 평형
을 이루지 못한 현재 상태에 지각을 Aiy-Heiskanen
가설에 근거하여 평형을 이루는 곳을 바탕으로 파
동수영역(wavenumber domain)에서 후괴에 중력이
상과 지형을 분석하여 모호면을 추출한 연구결과이다.
따라서 이 방법은 지구조적으로 안정된 판의 내부에
속하는 지역에서 적용할 때 바람직하며, 한반도의 경
우 동해처럼 상대적으로 판의 경계에 가까운 지역을
제외하는 것은 적합하다.

우선 연구지역이 지각균형은 이루고 있으면 후괴에
중력이상과 지형으로부터 계산된 중력이상은 zern의 가
까워지는데, 본 연구의 경우에는 이들의 상관계수는
0.370으로, 이는 본 연구지역이 지각균형적으로 완전
히 평형을 이루지 않고 있다는 증거가 될 수 있다. 또
한, Kwon and Yang(1985)는 USAMSFE(1963b)을 이
용하여 한반도에서의 지각균형량을 연구하였는데, 그 결
과 후괴에의 부사중량상의 중력 최정의 고도와 선형
최저 분석한 결과, 보상이 다소 덜 이루어진 것으로
발견한 것도 하나의 증거로(김영덕 등, 1987) 따라
서, 지형성으로부터 중력이상을 계산한 후, 이를 후괴에
여 중력이상과 스택트림을 이용하였다(Kim et al.,
2000a).

3.1.1. 한반도 모호면 추출

Table 1. Statistical comparison between different Moho models (unit: km).

<table>
<thead>
<tr>
<th>Model (year)</th>
<th>(Min, Max)</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sim (1971)</td>
<td>28.5, 38.7</td>
<td>32.8</td>
<td>2.2</td>
<td>남쪽한</td>
</tr>
<tr>
<td>Kwon & Yang (1985)</td>
<td>26.7, 39.3</td>
<td>32.3</td>
<td>2.8</td>
<td>남한</td>
</tr>
<tr>
<td>최정선 (1986)</td>
<td>32.6, 38.1</td>
<td>35.2</td>
<td>1.2</td>
<td>남한</td>
</tr>
<tr>
<td>Pak et al. (1996)</td>
<td>26.2, 38.4</td>
<td>31.2</td>
<td>2.7</td>
<td>남북한</td>
</tr>
</tbody>
</table>
건부과수를 절단과수로 결정하여, 각 해당 과수에 대한 심도를 계산하였다. Fig. 2는 본 연구에서 모호면을 추출한 과정을 요약한 것이다.

3.2. 중력이상의 산출

본 연구에서는 주로 Sandwell and Smith(1997)의 2분 간격 중력이상모델을 이용하였다. 후리어에 중력이상은 지각의 평균밀도를 2.74 g/cm³, 해수의 평균밀도를 1.03 g/cm³으로 가정하여 구부르게 보정을 실시하여 구부르게 중력이상을 추출하였다. Fig. 3과 4는 본 연구에서 사용한 한반도 및 주변해역의 후리어 및 구부르게 중력이상도이다. 후리어에 이상의 경우 욕상의 공간상성도가 해상에 비해 떨어지는데, 이는 해상에서는 조밀하고 규칙적인 인공위성 데이터 고도측정에 의해 중력이상이 계산된 반면 욕상은 인공위성 재조 고도관 등으로부터 유도된 최대 degree & order 360을 갖는 전지구 구면조화계수를 바탕으로 일부 지도로 탐사자료가 추가되었기 때문이다.

지형에 의한 중력효과를 효율적으로 제거하기 위해서 Sandwell의 2분 간격 DEM을 사용하여 지형보정을 실시하였다. 지형에 의한 중력효과는 41418개의 기준점에서 Ma and Watts(1994)의 알고리즘을 이용하여 계산하였고, 각 지점의 간격은 2 km로 하였다. Fig. 5는 지형에 의한 중력효과이고, 이로부터 지형보정이 이루어진 완전부수계 중력이상을 구하였다(Fig. 6). 이렇게 계산된 완전부수계 중력이상을 이용, 모호면의 심도를 재계산하였다. Fig. 5와 6은 지형에 의한 중력값 보정을 위하여 UTM 좌표로 변환되었다.

따라서, 본 연구에서 스펙트럼분석법을 위해서는 Fig. 3의 후리어에 중력이상과 Fig. 5의 지형에 의한 중력이상, 파워스펙트럼법을 위해서는 Fig. 6의 완전 부수계 중력이상을 사용하였다. 즉, 불연속면의 평균밀도를 구하기 위하여, 보정을 거친 중력이상을 주파수 영역에서 스펙트럼 분석에 의해 절단과수를 결정하고, 결정된 과수를 이용한 파워스펙트럼분석을 실시하였다.

입력자료의 후려에 갈수 전개는 연구지역범위를 주기로 무한히 반복되는 주기 함수로 가정하므로, 경계
값에서의 불규칙한 값의 차이로 발생하는 Gibbs현상에 의해 오차가 발생할 수 있으며, 이러한 2차원 이상(discrete)자료의 경계효과는 임계자료의 상하, 좌우 가정단에 의해 차이가 없을 때 그 효과가 감소된다. 따라서, 파워스펙트럼을 통한 평균상도 계산 및 이상분리를 위한 적절한수의 검정을 위해서는 경계 효과가 가능한 한 줄여야 한다. 이를 위해 본 연구에서는 미리링법을 사용하였다.

3.3. 파동수대비법을 이용한 모호면 추출

Kim et al.(2002a)는 지형에 의한 중력이상과 투입에
이 중력이상의 성분은 파동수대비법(Kim, 1996; Kim et al., 2006b)에 의하여 후처리의 파동수영역에서 서로 대비하여 Airy-Heiskanen 지각규정을 전체로 모호면으로부터 파생된 중력이상을 추출하였다. 파동수영역에서의 스펙트럼대비법(spectral correlation analysis, 혹은 wavenumber correlation analysis)은 두 개 이상의 다양데이터 사이의 상관관계를 파동수 각각에 대한 상관관계로 표시함으로써 두 데이터, 즉, 지형에 의한 중력이상과 투입에 중력이상 사이의 상관관계를 보다 더 정량, 정성적으로 연구할 수 있는 방법이다 (von Frese et al., 1997). 독립적으로 계산된 이 두 성분을 파동수 영역에서 대비하여 이들 성분의 각 파동수 k 사이의 상관계수 CCk를 우선 고려하여야 한다. 이들 wavevector들은 극좌표계에서

\[\hat{X}(k) = |X(k)|e^{i\phi_0}, \quad \hat{Y}(k) = |Y(k)|e^{i\phi_0} \]

로 표현되며, 여기서 성분 X와 Y는 각 각 지형에 의한 중력이상 및 투입에 중력이상을 나타내며|X(k)|,
|Y(k)|는 두 성분의 점폭을, |X(k)|와 |Y(k)|는
\[\hat{X}(k) \] , \[\hat{Y}(k) \] 는 헤싱각을 나타낸다. 이로부터, Δθk=\(\theta \hat{Y}(k) - \theta \hat{X}(k)\)는 헤싱각이 되며, 이때 j=\(\sqrt{-1}\)이다. 여기서, 두 벡터 사이의 상관계수 CC는

\[CC_k = \cos(\Delta \theta_k) = \frac{\hat{X}(k) \cdot \hat{Y}(k)}{\| \hat{X}(k) \| \| \hat{Y}(k) \|} \]

가 된다. 결국 두 성분 사이의CCk를 이용하여 이들을 서로 양으로 대비하는 성분, 즉 지형과 연관성을 갖는 성분을 추출한 후 이들을 투입에 중력이상에서 제거하여 각각 하부의 모호면, 즉 모호면으로부터 생성되었고 가정되는 성분을 추출하고, 이를 Gaussian-Legendre 적분법을 이용하여 구면좌표계(spherical coordinate)에
서 정산(forward) 및 역산(inverse) 모델링을 반복하여 모호먼의 기복을 추출하였다. 이때 하부지각과 상부 밸류들의 밸류차는 0.4 g/cm³로 가정하였다. 이로부터 추출된 모호먼의 기복은 Fig. 7에 도시되어 있다. 추출된 모호먼의 평균심도는 29.0 km, 표준편차는 1.4 km이며, 최소, 최대 심도는 (24.1, 31.1) km이다.

3.4. 파워스펙트럼을 이용한 모호먼 추출

Fig. 8은 절단파수가 결정하기 위한 완전 무프계 중력이상의 파수에 대한 진폭스펙트럼을 표시한 것으로 가로축은 공간주파수이고, 세로축은 무프계 중력이상의 진폭이다. 본 연구지역은 대륙 지각 외에 해양지각을 일부 포함하며, 따라서 진폭스펙트럼 계산시 대륙지각과 해양지각을 모두 포함한 경우와 대륙지각만 포함하는 경우의 두 가지로 나누어서 계산하였다.

그림에서 전체적으로 주파수가 증가함에 따라 진폭이 로그함수 형태의 감소함을 보이며, 대륙지각만 고려한 경우 동일한 진폭을 갖기 위한 공간주파수가 더 작게 나타난다. 이 경우 변곡점이 공간주파수 0.13 및 0.2부근에서 나타나고, 이를 이용하여 대륙지각만 고려한 파워스펙트럼을 이용하여 평균 밸류변화 심도 계산을 실시하였다. 대륙과 해양지각을 모두 포함한 경우의 밸류변화계산을 결정하기 위한 절단주파수로 이용될 변곡점은 공간주파수 0.22부근에서 나타나며, 이로부터 해양에서의 모호먼이 대륙에서의 모호먼보다 낮은 심도에 위치한다는 일반적인 사실을 확인 할 수 있으나, 실제 평균심도 계산에는 이용하지 않았다. 그 이유는 두 개의 서로 다른 지각의 평균심도로 하나의 스펙트럼을 이용하여 심도를 계산하는 것이 불합리하기 때문이다.

Fig. 9는 Fig. 8 중 대륙지각만을 고려한 경우의 파워스펙트럼 및 이를로부터 계산한 세 개의 선형회귀방정식이다. 여기서 Y₀과 Y₂는 모호먼 및 콘라트드 밸류변화를 나타내며, Y₀는 이들로부터 계산한 밸류변화를 나타낸다. 세 개의 수식으로부터 모호먼까지의 평균심도는 27.2 km로, 콘라트드의 심도는 12.4 km로 나타났고, 4.0 km 심도로부터 또 다른 밸류 변화층이 존재함으로 나타난다. 진폭이어로 이용한 한반도의 지각구조에 대한 기존의 연구에서 최광석(1986)은 콘라트드의 깊이는 평균 11 km이고, 조인철 등(1996)은 한반도 남부에는 12.0 km 및 27.7~34.7 km 깊이에 밸류변화층이 존재한다.

Fig. 8. Amplitude spectra of complete Bouguer gravity anomalies. Blue color denotes the spectrum for both continental and oceanic crusts, while red color denotes for continental crust only.
재하며, 김정수(1995)는 백양분화에서의 중·저리자료의 파워스케트럼분석으로 31.3 km, 14.3-14.4 km에 밀도경계면이 존재함을 밝혔다. 또한, 김정균과 정창중(1988)은 한반도 남부의 지각구조를 밝혀 위의 미소 지진 관측을 통한 지진과 분석한 한반도 남부가 15 km 깊이에 콘티드론이, 29 km 깊이에 모호면이 있음을 제시하였으며, 김선균(1985)은 중량·저지자료를 연계하여 32.6 km에 밀도불연속면이 존재한다고 하였다. 이상의 기존 연구결과로 볼 때 본 연구에서 중량 자료의 흐리에 분석으로 얻어진 12.4 km의 심도는 화강암층과 두암단층 지각의 밀도경계면 확인에 만연면으로, 27.2 km는 모호면을 해석한다. 기존 연구에 비해 모호면의 심도가 다소 낮은 이유는 본 연구에서는 동해의 일부 지역을 대략으로 간주하였기 때문인 것으로 사료된다.

본 연구에서는 모호면의 심도계산을 위하여 지표에서의 중량자료와 둥 두층 밀도차, 각 지각구조의 조기 심도를 역산으로의 조기 임력값으로 사용하였다. 상부층과 하부층을 일정한 밀도차를 갖는 동일한 네트의 직각각주로 보상식을 설정하였으며, 연구지역 전체를 대상으로 50 km x 50km의 네트의 각각, 연구지역을 32개로 갈라져 하였다. 역산된 사용은 모호면의 심도 계산하기 위해서는 0.4 g/cm^2의 밀도차를 이용하였다. 또한, 본 연구에서는 해안 안정화의 각지의 변화 양을 조절할 수 있는 해안조일의 크기를 변화시켜 계산되는 평활화 계획법을 사용하여 모호면의 기سوف을 작용하였다.

한편, 중량자료의 파워스케트럼에 의하여 분류면의 밀도경계면의 심도가 27.2 km이 높게 계산한 한반도의 지각의 심도는 기존연구를 참조하여 32 km로 결정하였고, 이로부터 중량자료를 분석하여, 그 심도 사이에는 일관된 밀도의 앞선 존재하는 것으로 기각하였다. 즉, 중량 이상으로부터 모호면으로의 생성된 주기이상호를 파워스케트럼 분석으로 결정된 상수차를 기준으로 주파수 영역에서 저역동과필터(low-pass filter)를 적용하였는데, 필터링을 적용한 피 모호면의 영향으로의 영향에 의한 이상을 제거하기 위해 파수가 0.13dB가 해 당하는 부동을 저역동과필터를 적용하여 제거함으로써 중량자료를 분류하였다.

역산 결과에서 값은 심도를 보이는 지역은 밀도변속면의 심도가 깊음을 지시한다. 심도 역산은 변속면의 평균 깊이가 상. 하부에 존재하는 암체의 밀도는 균일하고 가정하고, 상부에 존재하는 암체의 중량효과를 계산하여 변속면의 심도를 계산하였다. 따라서, 조기에 설정한 평균밀도보다 낮은 밀도의 암체가 상부에 대규모로 존재하는 경우 그 깊음을 보상하기 위하여 심도를 보인다. 즉, 이러한 과정을 통하여 나타나는 심도는 지밀도의 암체가 변속면 위에 존재할 가능성이 있으나 변속면의 심도가 실제로 깊을 가수층도 있기 때문에 최적적인 해석은 지질학적 구조의 관점에서 실시되어야 한다.

본 연구에서는 정밀한 흐리 변화를 이용, 중량자료 값을 파생법으로 분석하여 밀도면 한 후 3차원 역산법을 이용하여 모호면을 구하여 Fig. 10에 도시하였다. 모호면의 평균심도는 23.1 km, 표준편차는 2.1 km이다.

4. 모호면의 비교 및 통합

본 연구에서는 두 가지 방법을 이용하여 모호면의 기복을 계산하였다. 하루는 지태향상을 전체적으로 지향으로부터의 중량이상값과의 밀도변속을 이용한 것이라고(Fig. 7), 다른 하루는 밀도변속을 지평선으로부터의 변화를 이용한 것이다(Fig. 10). 이 두 가지 모호면의 모델은 서로 상관관계를 가지고 있다. 그러나 Fig. 7의 경우에 지평선에 의한 중량이상효과가 밀도변속 비례에 의해 완전히 제거된 결과이다. 한반도의 지각이 편한 지각면 내에 놓여 있는 경우, 해안부의 중량시계(Stress field)에 의해 한반도의 지각이 과연 얼마나 자주되고 있는가 하는 것이 문제이기 때문이다. 만편에 흐리 변화를 이용한 Fig. 10의 경우는 수력적 차이와의 균형의 단단한 임차면의 역산을 갖는 연속적인 밀도변속층의 존재 위에 대한 중량시계와 물질 저력기여에 의한 중량이상의 상계가 반영될 수 없는 이론의 모순으로 인해 어려하게 지평에 의한 효과가 심층구조에 자주하게 반영되는 문제가 있다. 두 모델의 통계적인 비교는 Table 2와 요약되었다. 이에 따르면 이 두 모델의 상관계수는 0.53으로 주로 모호면 산출의 방법론적인 차이에서 오는 오차에 반영된다는 계산의 오차가 일부 포함되어 두 모델이 차이가 나는 것으로 사료된다. 특히, 한반도 동쪽의 상부에서 나타나는 중량은 기존의 연구는 대소 차이를 보이며, 이는 많은 수학적인 차이를 가정한 그래프를 통한 오차일 수도 있다고 사료된다.

본 연구에서는 이 두 모호면으로부터 하나의 모호면을 산출하기 위해서 우선 두 모호면의 차이를 계산하여 이를 저역동과필터를 이용하여 평활화하고 이를 이용하여 최소자승법을 적용, 두 모호면을 보정하였고, 이들의 공통성을 추출하였다(Kim, 1996). 또한 데이터
처리과정에서 추출된 에너지는 Fig. 1A의 D, 7 및 11의 통계값을 참조로 하여 최종모델을 구하였다.

통계적으로 상향보면 모호변의 평균심도는 32.0 km, 표준편차는 2.5 km이며, (최소, 최대) 심도는 (20.3, 36.6) km이다. Fig. 7 및 10의 모델과의 상관관계를 포함한 통계는 Table 2에 요약되어 있다. Fig. 11의 최종 모델은 파동수대비법과 파라메트릭법에 의한 모델과 각각 0.83 및 0.76의 상관관계를 가지며, 평균 심도 및 표준편차는 두 모델의 중간값을 갖는다.

5. 결론 및 토의

본 연구에서는 중력이상 및 수치고도모델을 사용하여 한반도의 삼부지각구조, 즉 모호변의 심도를 추출하였다. 본 연구에 사용된 중력이상값은 Sandwell and Smith(1997)의 모델로부터 계산되었다. 이는 Geosat과 ERS1 등의 인공위성고도데이터 관측값을 주로 사용하
이 계산된 2분 간격의 전지구 모델이다. 이를 이용함으로써 데이터의 영역 분석이나 주파수 영역에서도 자료의 공간적 특성을 확보하였다. 수치고도모델은 Sandwell의 2분 간격 전지구 모델을 이용하였다.

모호먼 추출은 Kim et al.(2000a)에 의해 제안된 파동수대비법 및 후파에그러스를 이용한 파워스펙트럼 분석법을 이용하였다. 전자는 지각평면을 전제로, 지형에 의한 주파수와 주파수에 의한 특징성을 파동수영역에서 대비하여 모호먼의 심도를 계산하는 방법이고, 후자는 완전무게 중심이상으로부터 후리하게 변환을 이용하여 지하 밀도 변화와의 심도를 계산하는 방법이다. 이 두 모호먼은 서로 0.53의 상관관계를 갖고 있으며, 이는 모호먼 산출의 방법론적인 차이 및 계산상의 오차인 것으로 사료된다. 특히, 반반도 동북부에서 나타나는 고심도 지역은 기존의 연구의 다소 차이를 보이며, 이는 많은 수학적인 자료처리 과정에 의한 오차일 수도 있다고 사료된다.

이렇게 두 가지 독립적인 방법으로 추출된 모호먼을 하나로 동일하기 위한 방법으로, 두 모호먼의 차이를 계산한 후, 이를 최소자승법을 이용, 두 모호먼을 보정하였다. 결과적으로 반반도 최종 모호먼의 평균심도는 32.0 km이며, 표준편차는 2.5 km이며, 최소, 최대 심도는 (20.3, 36.6) km로 나타났다. 이 경우 지형에 의한 주파수와 후파에에 의한 특징성을 통한 조정된 결과이다. 반반도의 지형이 완전한 지각강 내에 놓여 있어서 A)airy-Heiskanen 지각평형설의 가정이 타당하다는 가정이 있는 경우, 혹은 구내적인 응력중에 의한 반반도의 지형이 과도한 영향을 미치지 않는다는 가정에서 분석되며, 이에 앞서 일정한 밀도차를 갖는 얽속적인 밀도변화층이 존재한다는 가정이 받아들여질 필요가 있다.

본 연구에서 제시한 세 가지 모호먼 심도는, 산업 탄성과 방사자료가 거의 전부한 시점에서, 모두 인공위성 지표로부터 유도된 측정치와 지형을 이용하여 계산되어졌으며, 또한 후리에 변환을 이용하여 데이터 영역의 주파수(혹은 파동수) 영역 모두에서 수학적으로 계산된 결과이다. 건출한 바와 같이 이들은 각각 상장 및 단점이 갖고 있으며, 이들을 통합하여 구축한 모델 역시 이들의 단점을 완전히 보완하지 못하였다. 다만 이들의 통합 과정 역시 수학적 계산에 의존된 바라, 이로부터 기존의 모델 또한 까다본한 한계가 있다.

사 사

본 연구는 한국지질원연구원 2000년도 고난부량반화와 지각변형 연구의 일부임을 밝힌다.

참고문헌

김성균(1996) 반반도의 지각구조에 관한 연구. 지질학회지. 31권, p. 393-400.
장용호(1995) 경상북도 남부지역(양산북부) 지각구조에 관한 지구물리학 연구. 연세대학교. 박사학위논문.
Kim, J.W., Kim, J.H. von Frese, R.R.B. Roman, D.R. and
Kumagai, N. (1953) Results of measurements of gravity in Japan and her vicinity. Kyoto University.
USAMSFE, (1963) Note on the South Korea land gravity.
U.S. Army Map Service Far East.