DOI QR코드

DOI QR Code

Single-mode fiber depolarizer for WDM optical communications

WDM 광통신 시스템을 위한 단일모드 광섬유 무편광기

  • 이동렬 (경희대학교 전자정보대학/레이저공학연구소) ;
  • 전상민 (경희대학교 전자정보대학/레이저공학연구소) ;
  • 김용평 (경희대학교 전자정보대학/레이저공학연구소)
  • Published : 2003.06.01

Abstract

We realized a depolarizer based on two 2$\times$2 directional couplers and single mode optical fiber. A reduction method for the degree of polarization is demonstrated by using computer simulation, which is verified experimentally. The degree of polarization is -20 dB for the polarized input beam of spectral width less than 0.05 nm. The experimental results verify that the polarization noise, which is due to the change of the input polarization state, can be reduced by making the fiber-ring delay-line length greater thanthecoherencelengthofthesource.

2$\times$2 방향성 결합기와 단일모드 광섬유를 이용하여 무편광기를 구현하였다. 행렬식을 이용한 모의실험을 통해 편광도를 줄이는 방법을 이론적으로 설명하였고 이를 실험적으로 검증하였다. 0.05 nm 이하의 좁은 선폭을 가진 편광된 입력광원의 편광상태 변화에 대해 -20 dB의 출력 편광도를 얻을 수 있었다 광섬유 지연선의 길이를 광원의 가간섭 길이보다 충분히 길게 함으로써 입력광의 편광 변화에 의한 강도 잡음을 효과적으로 없앨 수 있음을 실험적으로 검증하였다.

Keywords

References

  1. Electron. Lett. v.16 Polarization characteristics in long-length V.A.D. single mode fibers K.Okamoto;Y.Sasaki;T.Miya;M.Kawachi;T.Edahiro https://doi.org/10.1049/el:19800545
  2. J. Lightwave Technol. v.3 Polarization-state control schemes for hetorodyne or homodyne optical fiber communications T.Okoshi https://doi.org/10.1109/JLT.1985.1074336
  3. Opt. Lett. v.13 Observation fo input-polarization induced phase noise interfero-metric fiber-optic sensors A.D.Kersey;M.J. Marrone;A.Dandridge https://doi.org/10.1364/OL.13.000847
  4. IEEE Photon. Technol. Lett. v.6 Penality in long-haul optical amplifier systems due to polarization dependent loss and gain F.Bruyere;O.Audouin https://doi.org/10.1109/68.285570
  5. J. Lightwave Technol. v.4 Polarization maintaining fibers and their applications J.Noka;K.Okamoto;Y.Sasaki https://doi.org/10.1109/JLT.1986.1074847
  6. Electron. Lett. v.16 Single-mode fiber fractional wave device and polarization controllers H.C.Lefevre https://doi.org/10.1049/el:19800552
  7. J. Lightwave Technol. v.12 Polarization scrambling using a short piece of high-birefringence optical fiber and a multifrequency laser diode M.A.Santoro;C.D. Poole https://doi.org/10.1109/50.350592
  8. J. Lightwave Technol. v.1 Degree of polarization in the Lyot depolarizer W.K.Burns https://doi.org/10.1109/JLT.1983.1072136
  9. J. Lightwave Technol. v.19 Dual fiber-ring depolarizer M.Martinelli;J.C.Palais https://doi.org/10.1109/50.927525
  10. IEEE J. Quantum Electron. v.18 Degree of polarization in anisotropic single-mode fibers: theory J.L.Sakai;S.Machida;T.Kimura https://doi.org/10.1109/JQE.1982.1071593
  11. Opt. Lett. v.7 Polarization holding in birefringent single-mode fibers S.C.Rashleigh;W.K. Burns;R.P. Moeller;R.Ulich https://doi.org/10.1364/OL.7.000040
  12. Priciples to Optics M.Born;E.Wolf
  13. Appl. Opt. v.37 Fiber recirculating delay-line tunable depolarizer P.Shen;J.C.Palais;C.Lin https://doi.org/10.1364/AO.37.000443
  14. J. Lightwave Technol. v.3 Optical-fiber birefringence measurement using a photo-elastic modulator A.J.Barlow https://doi.org/10.1109/JLT.1985.1074139
  15. J. Lightwave Technol. v.9 Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors D.Tang;A.H.Rose;G.Day;S.M. Etzel https://doi.org/10.1109/50.84170