DOI QR코드

DOI QR Code

Refractive Index Control by Dopant for Thick Silica films Deposited by FHD

FHD법에 의해 증착된 실리카막의 도펀트 첨가에 의한 굴절률 제어

  • 김용탁 (성균관대학교 신소재공학과) ;
  • 서용곤 (전자부품연구원 광부품연구센터) ;
  • 윤형도 (전자부품연구원 광부품연구센터) ;
  • 임영민 (전자부품연구원 광부품연구센터) ;
  • 윤대호 (성균관대학교 신소재공학과)
  • Published : 2003.06.01

Abstract

Silica based Planar Lightwave Circuits (PLC) have been applied to various kinds of wave-guided optical passive devices. SiO$_2$ (buffer) and GeO$_2$-SiO$_2$ (core) thick films have been deposited by Flame Hydrolysis Deposition (FHD). The SiO$_2$ films were produced by the flame hydrolysis reaction of halide materials such as SiCl$_4$, POCl$_3$ and BCl$_3$ into an oxy-hydrogen torch. The P concentration increased from 2.0 to 2.8 at% on increasing the POCl$_3$/BCl$_3$ flow ratio. The refractive index increased from 1.4584 to 1.4605 on increasing the POC1$_3$/BC1$_3$ flow ratio from 0.6 to 2.6. The refractive index of GeO$_2$-SiO$_2$ films was controlled by the GeCl$_4$ flow rate. The refractive index increased from 1.4615 to 1.4809 on increasing the GeCl$_4$ flow rate from 30 to 120 sccm.

실리카 평판광회로는 다양한 광수동소자에 응용이 되고 있으며, 이를 구성하는 SiO$_2$와 GeO$_2$-SiO$_2$ 막은 화염가수분해증착에 의해 증착되었다. SiO$_2$ 막은 산-수소 토치에 SiCl$_4$, POC1$_3$와 BCl$_3$를 주입하여 화염가수반응에 의해 생성되었으며, POC1$_3$/BC1$_3$ 유량비가 증가함에 따라 P 농도는 2.0-2.8 at%까지 증가하였고, 굴절률은 1.4584-1.4605로 증가하였다. GeO$_2$-SiO$_2$ 막의 굴절률은 GeCl$_4$ 유량에 의해 제어되었으며 30-120 sccm으로 증가함에 따라 1.4615-1.4809로 증가하였다.

Keywords

References

  1. Optical and Quantum Electronics v.22 Silica Waveguides on Silicon and their Application to Integrated-optic Components M.Kawachi https://doi.org/10.1007/BF02113964
  2. J. Lightware Tech. v.7 no.10 Glass Waveguides on Silicon for Hybrid Optical Packaging C.H.Henry;G.E.Blonder;R.F.Kazarinov https://doi.org/10.1109/50.39094
  3. J. Lightware Tech. v.12 no.5 Highdensity Integrated Planar Lightwave Circuits Using SiO₂-GeO₂ Waveguides with a High Refractive Index Difference S.Suzuki;M.Yanagisawa;Y.Hibino;K.Oda https://doi.org/10.1109/50.293970
  4. Surface and Interface Analysis v.24 X-Ray Photoelectron Spectroscopy Study of Optical Waveguide Glasses M.H.Kibel;P.W.Leech https://doi.org/10.1002/(SICI)1096-9918(19960916)24:9<605::AID-SIA161>3.0.CO;2-K
  5. J. Kor. Ceram. Soc. v.39 Refractive Index Control of Silicon Oxynitride Thick Films on Core Layer of Silica Optical Waveguide Y.T.Kim;S.M.Cho;S.G.Yoon;Y.G.Seo;Y.M.Im;D.H.Yoon https://doi.org/10.4191/KCERS.2002.39.6.594
  6. J. Kor. Ceram. Soc. v.39 Optical Properties and Structural Analysis of SiO₂Thick Films Deposited by Plasma Enhanced Chemical Vapor Deposition S.M.Cho;Y.T.;Y.G.Seo;H.D.Yoon;Y.M.Im;D.H.Yoon https://doi.org/10.4191/KCERS.2002.39.5.479
  7. J. Appl. Phys. v.73 Optical Doping of Soda-Line-Silicaic Glass with Erbium by Ion Implantation E.Snoeks;G. N.van den Hoven;A.Poleman https://doi.org/10.1063/1.353432
  8. J. of Elec. and Elec. Mater. v.2 Calculation of Optical Field Distributions of Polymeric Waveguides Based on Replication Technology N.Y.Kim;J.H.Kim
  9. J. Kor. Ceram. Soc. v.34 Porous Silica Ceramics Prepared by Sol-gel Process-effect of H₂O/TEOS Molar Ratio J.H.Lee;W.J.Kim;J.Lee
  10. J. of the Kor. Ins. of Elec. and Elec. Mater. Eng. v.8 The Guided Field Distribution Characteristics in the Ion-Exchage Channel Glass Waveguide J.I.Park;T.S.Park;S.P.Chun;H.B.Chung
  11. Appl. Surf. Sci. v.109/110 248nm Photosensitivity of Reduces SiO₂-GeO₂ Layer in Silica Substrate : Preliminary Results on the Light-matter Interaction B.Poumellec;F.Kherbouche;C.Haut https://doi.org/10.1016/S0169-4332(96)00622-8
  12. Appl. Phys. Lett. v.43 Low-loss Integrated Optical Waveguides Fabricated by Nitrogen Ion Implantation I.K.Naik https://doi.org/10.1063/1.94423
  13. Appl. Opt. v.30 Plasmaenhanced Chemical Vapor Deposition of Low-loss SiON Optical Waveguides at 1.5m Wavelength F.Bruno;M.D.Guidice;R.Recca;F.Tesra https://doi.org/10.1364/AO.30.004560