PVA/Silica Hybrid Membrane Containing Sulfonic Acid Croup for Direct Methanol Fuel Cells Application

Sulfonic acid group을 갖는 PVA/Silica Hybrid막의 DMFC 응용

  • Young Moo Lee (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyag University) ;
  • Dae Sik Kim (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyag University) ;
  • Kwang Ho Shin (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyag University) ;
  • Ho Bum Park (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyag University) ;
  • Ji Won Rhim (Department of Chemical Engineering, Hannam University)
  • Published : 2003.06.01

Abstract

In the present study, crosslinked poly(vinyl alcohol) (PVA) membranes were prepared at various crosslinking agent content using sulfosuccinic acid (SSA) containing sulfonic acid group ($SO_3H)$. To reduce methanol permeability, silica was introduced to the membrane using sol-gel process. The hybrid membranes were studied in relation to proton conductivity and methanol permeability. It was found that both these properties were very dependent on the effect of SSA content as a crosslinking agent and as a donor of hydrophilic $SO_3H)$ group. The proton conductivities of these PVA/SSA/Silica membranes are in the range from $10^{-3}\;to\;10^{-2}$S/cm and the methanol permeabilities are in the range from $10^{-8}\;to\;10^{-7}\;cm^2/sec$.

본 연구에서는 설폰기를 함유한 sulfosuccinic acid를 가교제로 사용하였다. 또한, 메탄을 투과도를 줄이기 위해 실리카를 졸-겔 방법을 사용하여 성장시킨 PVA/Silica 하이브리드막을 제조하여 수소 이온 전도도 및 메탄을 투과도에 관하여 연구하였다. 수소 이온 전도도 및 메탄을 투과도는 가교제 농도 및 친수성 $SO_3H$의 함량에 영향을 받았으며, 제조된 막의 수소 이온 전도도는 10^{-3}~10^{-2}$ S/cm 범위에 있었고, 메탄을 투과도는 $10^{-8}~10^{-7}\;cm^2/s$ 를 갖는다.

Keywords

References

  1. J. Electrochem. Soc v.143 High performance direct methanol polymer electrolyte fuel cells X.Ren;M.S.Wilson;S.Gottesfel
  2. J. Power Sources v.4 The methanolair fuel cell:a selective review of methanol oxidation mechanisms at platinum electrodes in acid electrolytes N.A.Hampson;M.J.Wilars;B.D.McNicol
  3. J, Power Sources v.74 Investigation of methanol crossover and single electrode performance during PEMFC operation: a study using a solid polymer electrolyte membrane fuel system A.Kver;W.Vielstich
  4. Membrane Journal v.10 Development of Membrane Materials for Direct Methanol Fuel Cell Y.M.Lee;H.B.Park
  5. J. Membr. Sci. v.214 Structural characterization and surface modification of sulfonated polystyrene(ethylenebutylene)styrene triblock proton exchange membranes J.Won;S.W.Choi;Y.S.Kang;H.T.Ha;I.H.Oh;H.S.Kim;K.T.Kim;W.H.Jo
  6. J. Electrochem. Soc v.142 A methanol impermeable proton conducting composite electrolyte system C.Pu;W.Huang;K.Ley;E.S.Smokon
  7. Catal. Today. v.38 Aspects of the anodic oxidation of methanol G.T.Burstein;C.J.Barnett;A.R.Kucernak;K.R.Williams
  8. J. Power Sources v.84 A review of the state-of-the-art of the methanol crossover in direct metanol fuel cell A.Heinzel;V.M.Barragan
  9. German Patent 1980 131C1 H.Dohle
  10. US Patent 5849428 Membrane for hydrogen and methanol fuel cell R.P.Hamlen
  11. Solid State Ionics v.46 Solid state electolyte membanes direct methanol fuel cells J.Kjar;S. Yde-Andersen;N.A.Knudsen;E.Skou
  12. Solid State Ionics v.125 Investigation of a direct methanol fuel cell based on a composite Nafion-silica electrolyte for high temperature operation P.L.Antonucci;A.S.Srico.P.;Creti;E.Ramunni;V.Antonucci
  13. Polymer v.40 Electroactive polymer SiO₂nanocomposites for metal uptake K.G.Neoh;K.K.Tan;P.L.Goh;S.W.Huang;E.T.Kang;K.L.Tan
  14. Polymer v.42 Characterization and properties of hybrid composites prepared from poly(vinylidene fluoridetetrafluoroethylene) and SiO₂ J.W.Cho;K.I.Sul
  15. Hydrogel in medicine and pharmacy v.1 N.A.Peppas
  16. J. Appl. Polym. Sci. v.85 Pervaporation separation of water-ethanol mixtures using metal-ion-exchanged poly(vinyl alcohol)(PVA)/sulfosuccinic acid (SSA) membranes J.W.Rhim;S.K.Yeom;S.W.Kim
  17. Solid State lonics. v.119 Novel proton conducting composite electrolytes for application in methanol fuel cells Z.Plotarzewski;W.Wieczorek;J.Przyluski;V.Antonucci
  18. J. Appl. Polym. Sci. v.68 Modification of poly(vinyl alcohol) membranes using sulfur-succinic acid and its application to pervaporation separation of water-alcohol mixtures J.W.Rhim;C.K.Yeom;S.W.Kim
  19. J. Appl. Polym. Sci. v.75 Pervaporation separation of MTBE-methanol mixtures using cross-linked PVA membranes J.W.Rhim;Y.K.Kim
  20. J. Membr. Sci. v.166 Ionomeric membranes based on partially sulfonated poly(strene):synthesis, proton conduction and methanol permeation N.Carretta;V.Tricoli;F.Picchioni
  21. Fuel Cells v.1 A Sol-Gel Derived Organic/Inorganic Hybrid Membrane for Intermediate Temperature PEFC I.Honma;O.Nishikawa;T.Sugimoto;S.Nomura;H.Nakajima