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BAYES EMPIRICAL BAYES ESTIMATION OF A
PROPORTION UNDER NONIGNORABLE
NONRESPONSE

JA1 WoN CHo!! AND BALGOBIN NANDRAM?

ABSTRACT

The National Health Interview Survey (NHIS) is one of the surveys used
to assess the health status of the US population. One indicator of the na-
tion’s health is the total number of doctor visits made by the household
members in the past year. There is a substantial nonresponse among the
sampled households, and the main issue we address here is that the nonre-
sponse mechanism should not be ignored because respondents and nonre-
spondents differ. It is standard practice to summarize the number of doctor
visits by the binary variable of no doctor visit versus at least one doctor
visit by a household for each of the fifty states and the District of Columbia.
We consider a nonignorable nonresponse model that expresses uncertainty
about ignorability through the ratio of odds of a household doctor visit
among respondents to the odds of doctor visit among all households. This
is a hierarchical model in which a nonignorable nonresponse model is cen-
tered on an ignorable nonresponse model. Another feature of this model is
that it permits us to “borrow strength” across states as in small area es-
timation; this helps because some of the parameters are weakly identified.
However, for simplicity we assume that the hyperparameters are fixed but
unknown, and these hyperparameters are estimated by the EM algorithm;
thereby making our method Bayes empirical Bayes. Our main result is that
for some of the states the nonresponse mechanism can be considered non-
ignorable, and that 95% credible intervals of the probability of a household
doctor visit and the probability that a household responds shed important
light on the NHIS.
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1. INTRODUCTION

Recently, nonresponse rates have been increasing in many surveys (De Heer,
1999; Groves and Couper, 1998) making the nonresponse problem more and more
important. There has been much activity in estimating survey nonresponse. The
main difficulty in modeling of nonresponse is in building a sensible relation be-
tween the respondents and the nonrespondents. This is especially important when
there are very sparse information from the nonrespondents. While the method of
ratio estimation is simple, it treats the respondents and the nonrespondents sym-
metrically, and therefore, inaccurate when the respondents and nonrespondents
actually differ. For many surveys the units are households, and the response is
binary. Thus, we propose a method to estimate the proportion of households
possessing a characteristic (e.g., doctor visits in the past year) using a Bayesian
method which allows pooling of data across areas.

The National Health Interview Survey (NHIS) estimates the proportion of
households with at least one doctor visit during the past year. The NHIS is
one of the surveys used to measure the health status of the U.S. population.
NHIS executes the national surveys on chronic and acute conditions, doctor visit,
hospital discharge, medical care expenditure and utilization, disability and other
health topics. The major part of the survey findings is included in an annual
report to the public and government, and helps them formulate improved health
care policies.

The main issue we consider here is how to account for the bias due to nonre-
sponse in the NHIS. Nonresponse arises mainly from refusals, non contacts, those
households with language difficulties, or households not qualified. Thus, there are
differences between respondents and nonrespondents. The ratio method, used
previously for the NHIS, assumes that the proportion of the characteristic for the
respondents and the nonrespondents is the same. Therefore, the ratio method
will be inaccurate for the situations in which respondents and nonrespondents
differ.

Rubin (1987) and Little and Rubin (1987) describe two types of models which
differ according to the ignorablility of nonresponse. In the ignorable model, the
distribution of the variable of interest for a respondent is the same as the distribu-
tion of that variable for a nonrespondent with the same values of the covariates.
In addition, the parameters in the distributions of the variable and the response
must be distinct (Rubin, 1976). All other models are nonignorable. We consider
a model that centers a nonignorable model on an ignorable model. In this model
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an odds ratio (the odds of a household doctor visit among the responding house-
holds versus the odds of a household doctor visit among all households) is used to
control the extent of nonignorability, and thereby in the Bayesian approach induc-
ing uncertainty about ignorability. This is consistent with Draper (1995) where
the overall consensus is to use a continuous model expansion whenever possible.
Henceforth, we will call this family of models the expansion model because when
the odds ratio is unity, the model is ignorable. Rubin (1977), Pregibon (1977),
Little (1982), Nordheim (1984), Kadane (1993), Phillips (1993), and Forster and
Smith (1998) use similar models that control the extent of nonignorability.

Little and Rubin (1987) and Little (1993) distinguish between two classes of
models for missing data. In the selection approach the hypothetical complete data
are modeled, and a model for the nonresponse mechanism is added conditional
on the hypothetical data (see Heckman, 1976; Olson, 1980). In the pattern
mixture approach the population is stratified into two patterns, respondents and
nonrespondents, each being modeled separately and the final answer is obtained
by a probabilistic mixture of these two. The selection approach is more natural
for our problem.

Although the Bayesian method is appropriate for the analysis of nonignorable
nonresponse problems (Little and Rubin, 1987; Rubin, 1987), the main difficulty
is to model the relationship between the respondents and nonrespondents. Our
objective is a simple Bayesian analysis, but a full Bayesian analysis requires
Markov chain Monte Carlo (MCMC) methods which we want to avoid. Our
approach here is to provide a simple algorithm in which the users need not worry
about monitoring (tuning and convergence) of the algorithm. Monitoring of an
MCMC algorithm can be time-consuming, needs considerable expertise, and they
have to be performed for every new data set one needs to analyze. Thus, we
consider the Bayes empirical Bayes approach (Deely and Lindley, 1981) to study
nonignorable nonresponse. The simplicity in this approach arises, because in
the posterior distributions of the parameters of interest, certain parameters (e.g.,
hyperparameters) are assumed fixed but unknown and are estimated using the
current data. In our hierarchical model we estimate the hyperparameters using
the EM algorithm, and afterward we assume that these estimates are known.
Indeed, this approach is useful if inference about the parameters of interest is not
sensitive to the specification of the hyperparameters. However, in our case the
analysis is still complicated; even modal estimates from the EM algorithm are
difficult to obtain.

The NHIS data are collected from the fifty states and the District of Columbia.
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For each area (a state or the District of Columbia) there are count data on the
number of households, the number of responding households, and the number of
household doctor visits. Like most nonresponse models many of the parameters in
our expansion model are weakly identifiable. Thus, in the spirit of small area esti-
mation, our expansion model “borrows strength” across the areas. Stasny (1991)
used a hierarchical Bayes nonignorable selection model to study victimization in
the National Crime Survey. A Bayes empirical Bayes approach, in which maxi-
mum likelihood estimates are substituted for the unknown hyperparameters, was
used. Essentially our expansion model is an extension of her model.

Our objective is to describe the expansion model, to show how to fit it using a
Bayes empirical Bayes method, and to apply it to the NHIS data on doctor visits
in the past year. That is, we provide an algorithm that can be used routinely
and which does not require monitoring as in MCMC studies. In Section 2 we
explain the issue of nonidentifiability, and we show how the Bayesian approach
provides a solution to the problem. In Section 3 we describe the Bayes empirical
Bayes methodology for the expansion model. In Section 4 we present an analysis
of the NHIS data, and we compare our model that pools the data with the one
that uses the states individually (no pooling). Finally, Section 5 has concluding
remarks.

2. ANALYSIS OF A SINGLE STATE

In this section we describe the analysis of a single state when there is nonig-
norable nonresponse. The purpose of this analysis is to describe the strength of
the Bayesian analysis for the nonignorable nonresponse problem.

Let p denote the probability that there is at least one doctor visit in this
state, mp the probability that a household with no doctor visit responds and m;
the probability that a household with at least one doctor visit responds. Our
basic model for nonignorable nonresponse is

y; | p d Bernoulli(p),
rj | ®o, y; =0 ud Bernoulli(rg),
ri |7, yj=1 wd Bernoulli(m ),

with independence over 5, =1,...,n,y = Z?:l yj and r = 2?21 ;. Note that
if m; = mp, then the model is an ignorable nonresponse model. The parameters of
interest are p, v = w1 /7 and § = mp + m1(1 — p), the proportion of respondents
in the entire area (population).
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2.1. Nonidentifiability issue

In this section we address the issue of nonidentifiability when there is no prior
information about p, mg and =y.
It is easy to show that the likelihood function is

L(p,mo,m1 | y,7) = (mp)?{mo(1=p)} {1 —mp—m(l=p)}" .

The main problem here is that in this likelihood function the numbers of house-
holds with and without doctor visits are not distinguishable among the non-
respondents. Our explanation becomes more transparent when we make the
transformation a = mp and 8 = mp(1 — p). Then, we have

L(e,B|y,r) =B 7¥(1—a—-pB)"".

Therefore, the likelihood is a function only of two parameters, o and 3. Thus,
p, Mo and 7; are not identifiable in the likelihood function, and so they can not
be estimated. Letting v = /7o, observe that o/ = vp/(1 — p). Thus, if v
is known, then p is identifiable. For example, if vy = 1 (i.e., mp = 7, ignorable
nonresponse model), then p = «/(a + ). Thus, once 7 is unknown (i.e., the
relation between my and m; is unknown), p, 7y and 7 are all nonidentifiable. The
failure of the non-Bayesian method is primarily due to the lack of information
about p, g and ;. If there is some knowledge about the relation between mg and
71, there will be an improvement in inference. This can be exploited through +.

Then the main question is “How can p, myp and 7; be estimated efficiently?”.
It turns out that an answer can be obtained, not by the traditional method, but
through the Bayesian paradigm.

2.2. A Bayesion analysis

Letting z denote the number of households with at least one doctor visit
among the nonrespondents. Note that z is a latent variable and is unknown to
us. The entire nonresponse problem is solved once z becomes known. This is key
to our analysis. Thus, starting with + in our model, the augmented likelihood
function is

L(p’777T07Z [ y7r)
= (" - ) (ymop)¥ {mo(1 — p)} ¥ {(1 — ymo)p}* {(1 = m0)(1 —p)}"" 7%,

z
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Vand z = 0,1,...,n — r. Suppose we consider proper non-

where 0 < v < 7wy~
informative prior densities for p,my and v by p ~ U(0,1), mg ~ U(0,1), and
v | 7o ~ U(0,7~!). Then the joint posterior density of the parameters z, p, 79, 7,

given y and r is
f(p,'y,m),z | y,’l")

o o (" - T)py“ (1= )" ¥=5a7 Y (1 = m)™=(ymo)¥ (1 = o),
Z

where 0 < p, 79 < 1,0 <y < 7wy~  and z =0,1,...,n—r. This posterior density
must be proper because the prior density is proper. It is slightly more convenient
to make the transformation p = p, n7p = mg and 7; = ymy for which the absolute
value of the Jacobian is mp~!. Thus,

fv, 70,2 | y,7)

o (7T )p = o) -

where 0 < p, mp, m1 < land 2 =0,1,...,n—r. Now, letting B(u,v) = I'(u)['(v)/
[(u+v) ([(u) is the gamma function) denote the beta function, the normalization
constant is

n—r
Z(n..r)B(y-i—z-k1,n—y—z+1)B(r—y+1,n—r—z+1)
z
z=0

x Bly+1,z+1)

and this latter quantity is finite. That is, as indicated above, the joint posterior
density of p, mg, 71 |y, 7 is proper. Thus, p, mp, 71 and therefore, p, mo,y are all
identifiable, albeit weakly.

Note that we have incorporated virtually no information through the uniform
priors. Thus, it is simply because the parameters are stochastic that helps them
to become identifiable. In fact, this probabilistic input in the model actually
changes the structure of the model because when p, 7y, m; and z are integrated
out, an intra-class correlation is introduced among the pairs (y;,7;). Another
feature that is useful is that p, mp, 71 and z are all bounded. This is a strength of
the Bayesian paradigm, and there are numerous examples in Bayesian statistics.

Inference about p, g and -y can be easily obtained. For the joint posterior
density of p, mg and 7 is

n—r

f(p,7r0,7r1 ‘ Z/ﬂ") :Zf(paﬂ-mﬂ-l | Z:z,y,T)PT‘(Z=z I y,'f'),
z=0
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where

PT(ZZZly,T)ZW
z=0 2

and

wy = (n_T>B(y+z+1,n—y—z+1)B(7"—y+l,n—r—z-i-l)
xB(y +1,z +1).
Also, given z, y and r, it is clear that p, mp and m; are independent with

|2y ~ Betaly+ 2+ Ln—y—2+1)
mo | z,y,7 ~ Beta(r —y+1,n—r—2z+1),
7 | z,y,7 ~ Beta(y + 1,z + 1).

Thus, inference about p, mg and 71, and therefore § and v = 7} /mp can be made
by drawing samples from p, 7o, 71, 2 | y, 7 using the composition method.

For the NHIS in Table 1 for each area, we present n, r and y. The last two
columns show the observed proportion p = y/r of responding households with
at least one doctor visit and the proportion § = r/n of responding households,
respectively. The nine states marked with asterisks are the households with
8% or more nonrespondents. These states are Colorado, Delaware, District of
Columbia, Florida, Louisiana, Maryland, New York, South Carolina and West
Virginia. Hawaii and Maine reported the highest p of doctor visits with 38%
for each of these states. To make inference about p, 6 and v for each individual
state, we have drawn a sample of 10,000 observations using the composition
method. We present 95% credible intervals for p and § in the second and third
columns of Table 2. For the moment we note that the 95% credible intervals for
p and § are wide, especially for p. In Table 3 we present summaries about the
posterior densities of . The numerical standard error (column labeled NSE) are
all very small, indicating that the computation is performing well. The posterior
means (column labeled AVG) across the areas are all very similar (range: 0.92-
0.98). The posterior standard deviations (column labeled STD) are very different
(range: 0.032-0.172). These correspond to very wide 95% credible intervals, all
containing 1. In fact, the Pr(y < 1|y,r) lie between 0.61 and 0.73, indicating
that the nonresponse mechanism is ignorable for each state. Thus, while inference
can be made for a single state, such an estimate is very unreliable. If there
was more information about each area, some of the 95% credible intervals may
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not contain 1 and Pr(y < 1|y,r) could be quite large (near 1). For example,
consider California the 95% credible interval is (0.85,1.08) and the corresponding
probability is 0.68. If more information (e.g., prior) can be incorporated into the
analysis, the interval will become narrower and may not contain 1. Also the
corresponding probability may get closer to 1. This is discussed in detail in
Section 4.

Then, the next issue is “How can we obtain more reliable estimates?”. This
is the key issue we address in this paper. The idea is to use a prior which
permits a weighted pooling of data across the states. This is not unreasonable
because one can think that there is some similarity across the states. This is
the fundamental idea in small area estimation where a “borrowing of strength”
across the ensemble is encouraged. We also use an expansion model which centers
a nonignorable nonresponse model on an ignorable one. See Draper (1995) for
a discussion of the general statistical problem, and Forster and Smith (1998) for
the nonresponse problem.

3. METHODOLOGY FOR SMALL AREAS

In this section we show how to pool the data from the 51 areas to improve
the inference. In Section 3.1 we describe the expansion model and in Section
3.2 we describe the computations. We note that the EM algorithm is used to
estimate the hyperparameters, and these are used as the true values. Then, the
Metropolis algorithm is used to draw samples from the posterior distribution
assuming these hyperparameters are known. This is a simplification over the full
Bayesian approach in which there is a little loss.

3.1. A model for small areas

Letting £ be the number of areas (there are fifty one areas which are the fifty
states and the District of Columbia), we assume that a sample of n; households
is taken from the i*" state (conveniently called area), i = 1,...,£. Let the binary
characteristic be

~_} 1, if household j in area 4 visited a doctor at least once,
Yij 0, if household j in area i did not visit a doctor,
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and the response variable

e 1, if household j in area i is a respondent,
" 0, if household j in area i is not a respondent,

where 5 = 1,...,¢ and j = 1,...,n;, the size of the sample from the ** area.
Let y; = Z;":l y;; be the number of households with at least one doctor visit,
and r; = Z]"’Zl 7ij, the number of responding households over the past year. The
expansion model for nonignorable nonresponse is

Yij | pi d Bernoulli(p;),
Tij | T, vy Yij =1 ud Bernoulli(y;7;),

Tij | 71,7 Yij =0 u Bernoulli(m;),

1 =1,...,¢, j = 1,...,n;. Here ~; is the ratio of the odds of success among
respondents to the odds of success among all individuals in the i** area. Observe
that ~y; reflects the extent of nonignorability of the nonrespondents and, in fact,
incorporate the uncertainty about ignorability into the model. If 7; = 1, the
model becomes ignorable and there is no difference between respondents and
nonrespondents. One might also consider the ratio of the odds of success among
respondents and the odds of success among nonrespondents (see comments in
Section 4).

The parameters of interest are p;, v; and é; where é; is the probability of
responding in the i* area and is 6; = m;{v;p; + (1 — p;)}. Assuming all areas are
similar, we take the parameters (p;, §;,7;) to have a common distribution. This
assumption is useful because it helps in the estimation for the parameters that
are weakly identified by the data as described in Section 3. For p;, we take

»
pi | w1, 11~ Beta(uaiy, (1 — pa)m1). (3.1)

Note that E(p;|p1,m) = p1 and Var(p; |p1,n1) = (1 — p1)/(m1 +1). This
reparameterization is useful because the parameters y) and 7 are approximately
orthogonal.

We wish to center the 7; at unity (i.e., center on an ignorable model). It
is possible to do so by assuming that the -; have a common mean of unity.
Thus, one can assume that v; |v ~ dT'(v,v), v; > 0, where E(v;|v) = 1 and
-1

Var(y;|v) = v Thus, we can center the expansion model on an ignorable

model with 7; fluctuating about unity with a standard deviation 1/y/v a priori.
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But there is the issue that 0 < y;m; < 1. Thus, we assume that the parameters
(7, i) are jointly independent with

.
i | p2, 72 =~ Beta(uaTa, (1 — pa)72)

and

fyi|1/irﬁiI‘(u,u), O<yi<m™t, 0<m<l.

Therefore, the joint prior density for (7;,~;) is given by

(i, Vi | p2, T2, V) (3.2)

2721 1- -

B(uata, (1 — p2)72)

v—1

= vy, exp(—vy;)

Ii_l(ﬂ27727 V)a

where letting ¢; = m;v;,

1 1 —o;/7; v
Hamw) = [ [{ERER g amas 33

and

paT2—1 (1 _ 7{_2_)(1—;42)72—1

fl(ﬂ-h(bi I l/) = V¢;/—17Ti

, O0<m,d; <1,
B(p2T2, (1 — pi2)72) o
Thus, the joint prior distribution for (p;, 7;,;) is the product of the densities in
(3.1) and (3.3).

For a full Bayesian analysis, prior distributions are needed for the hyperpa-
rameters py, 71, po, 72 and v. Thus, we take

pr % Beta(1,1), r=1,2.

That is, uniform proper prior densities are used for p; and py. We also use proper
prior distributions for 71, 7 and v. These prior distributions are similar to the
uniform shrinkage proper prior distributions. Specifically, we take

1

p(v) = m,

v>0 and p(r,) = >0, r=1,2

(v+1)%’
with independence over uj, 71, p2, 72 and v. See, for example, Albert (1988)
where unity is used in the shrinkage prior distribution (i.e., v+ 1 instead of v +a
for some choice of a). These prior distributions discourage the posterior modal
estimates of 71, 70 and v to be on the boundary of the parameter space which
will make inference difficult. We note also that Stasny (1991) essentially did not
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use any prior distribution on the hyperparameters and resorted to the maximum
likelihood estimators and, in fact, she did not use an expansion model.

For an empirical Bayes approach one does not need to specify the prior distri-
butions. In this approach the hyperparameters, uy, 71, it2, ™ and v, are simply
assumed to be fixed quantities. Then, they are estimated using maximum likeli-
hood procedures. It is slightly more elegant to provide a full Bayesian model. We
have shown in Section 4 that inference about the parameters p;, ; and 6; is not
sensitive to misspecifications of these hyperparameters. However, as noted ear-
lier a full Bayesian analysis requires the implementation of Markov chain Monte
Carlo methods which we avoid because we want to make our method available
to practitioners. Thus, we use the Bayes empirical Bayes method in which we
obtain posterior modal estimates of i1, 71, 2, 72 and v; thereafter we treat these
parameters as known quantities. We use the EM algorithm (Dempster et al.,
1977) to estimate these hyperparameters directly. The EM algorithm is a general
approach to perform the computation of maximum likelihood estimation when
the observation can be viewed as incomplete data.

Let r; = Z;“:I ri; be the number of respondents and y; = Z?’:l y;; the number
of households with at least one doctor visit, and n; — r; is the number of non-
respondents. Since the number of visits among the nonrespondents is unknown,
we denote it by the latent variable z;, and hence, the number of households with
no visits among them is n; — r; — z;.

As seen earlier for the %" area, the likelihood function can be represented by
a four-cell multinomial probability mass function. Then, the combined likelihood
function is proportional to

l
f(y7r7z’p,7:ﬂ-) ZHf($i>Ti>zi'pi>7i>7Ti)7 (34)
i=1
where
N\ (Ti\ [T =Ty ; Ti—Yi
fir iy zi | pi,vismi) = ( )( l)( _ Z)(%?Tipi)y’{m(l —p)} Y
Ty Yi Z;

x{(1 —vim)pi } {1 — m) (L —py) } T

Using Bayes’ theorem, the joint posterior density of all the parameters z, p, m,~,
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1,71, 2, T2, v given y and r is

f(pa7aﬂaza“17Tlaﬂ27727V I }’71‘)
oc p(v) p(p1) p(uz) p(m1) p(72) p(2)

4 ) Yyi+zitpuim—1 ni—yi—zi+{1—p1)T1 =1
N;: — 2z 7 1 — Yy 2 M1)T1
X H { ( Z 1) & 0= py) (vima)¥* (1 — yim)™
=1

2 B(pyi, (1 = p1)m)

-

Ti—Yi+uzT2—1 ni—ri—zi+(1- -1
1,1 2 (1 —_ 7-‘-1) i i z+( #2)7'2

X

v—-1 -1
: — T
B(para, (1 — pg)72) vy, exp(—vy); (N2a7'2a1/)} )

where I; is given in (3.3). However, it is convenient to make the transformation
¢i = vimi, 1 = 1,...,£ with z and all other parameters untransformed. The
absolute value of the Jacobian of this transformation is Hle 77 1. Therefore, the
joint posterior density of all the parameters z,p, w, @, p1, 11, f2, To, v given y
and r is

f(pa ¢77r7z7,u1a7-1a:u'277-2) v | Y7r)
o p(v) p(u1) pp2) p(11) p(72) p(2)

£ 4z - oy — _ _
y H { (nl _ ’f‘i) pz:l_h‘*‘Zz'f‘/—"lTl 1 (1 — ;)i zi+(1—p1)m1—1
=1

Z; B(pm, (1= p1)71)
riyitiem=lg _ pyniri—zit(l-pe)n -l

s +r—1 \?i 7(1
(1= 4) Buars, (1 — pi2)72)
y {exp(;qéi/ﬁi) }" VI iz, 1/)} (3.5)

In a full Bayesian analysis, inference proceeds after drawing a sample from
f(p, ¢, 7, 2,71, 12, T2, v |y,r) using Markov chain Monte Carlo methods.

3.2. Computations

Because the posterior density is not accessible directly, we use a sampling
based method to obtain samples from the posterior density to permit an inference.
We marginalize out the parameters (p;, m;, ¢;) from the joint posterior density to
obtain the posterior density f(z,p1, 71,42, 72,7 |y,r). Because it is difficult to
obtain samples from this posterior density, we obtain the posterior modes for
the hyperparameters pi, 71, 2, 72, and v. First, we obtain estimators in the
spirit of the method of moments (see Appendix A). These estimates are to be
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used to start up the EM algorithm (see Appendix B). We note that the EM
algorithm converges within 10 steps and the estimates of the hyperparameters
are py; = 0.331, m; = 566, pus = 0.963, 7 = 6099, and v = 9.018. Then, we use
these estimated values as if they are the true values of yy, 71, p2, 7 and v, and
this approach provides a Bayes empirical Bayes approach. Letting

fa(Z, K1, T1, 42, T2,V I Y, I')
o p(v) p(T1) p(72) p(2)

¢
y (ni~ri> Bly;+ zi + mm,mi —yi — 2z + (1 — pa)m)
2 B(pu171, (1 — p1)71)

1
B(Ti—yi+M272,ni—7‘i—Zi+(1—M2)T2)
X v By +v,z, +1) 7,
B(para, (1 — p2)m) (ys i+ 1)

the posterior density is

£
f(Z,Nl,Tl,/JIQ,TQ,V | yar) o8 fa(z7/~1‘17717“217-27y | Y’r)H{Rzi(“2a727V)} (36)

=1

where

Rzi(:u'277'27’/)
1 1 e . v

= Ii_l(“27727u)/ / {E’&(WM} f2(7ria¢i I v, Z—L‘,yi,""i)d'fridd)i
g 4] i

and

f?(ﬂ-i7¢i | v, ziayiar’i)
¢gi+u—1(1 — ;)7 ,”:i'“?/i'f'll-?ﬁ‘l (1-— m)m—n—zﬁ(l—uz)w—l

© Bit+v,zi+ 1) B(ri —yi+ pate,ni — i — zi + (1 — pa)72)

With the known hyperparameters, we can obtain samples from the simpler
Jjoint posterior density

fzi,pi,mis i | yox) = g1(pi | 215 95,73) g2(mi, @i | 2i,y,7) g3(z | y,r).
The posterior density g; (p; | 2, yi,73) 18

ind
pi | Yisri, 2 ~ Beta(y; + 2z + pim,ni — v + (1 — p1)m) (3.7)
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from which the samples for p; are obtained. The joint posterior density m;, ¢; |
Yi, Ti, % 1S given by
exp(=¢i/mi) "

92(mi, i | i, i, 21) o { - } 9a (i, $i | Yi, 74, 215 V) (3.8)
(3

where

ga('ﬁi) QS’L | 28, Yir Tiy V)

¢Z_ﬁ+v~1(1 _ qb,)z’ W;‘i—yi+ll27'2“‘1 (1 _ m)m—r,——zi-k(l—ltz)Tz—l

T Blyi+v,zi+1) B(r—yi+pame,ni — 1 — 2z + (1 — p2)72)

The posterior probability mass functions of the z; are

pzily,r) = 4=0,..,m =y, (3.9)
where

e —
Wz X < 1z, Z)B(yi‘l‘zi‘*‘ﬂlﬁani_yi—zi+(1_Nl)TI)B(yi+Vazi+1)
(]

XB(ri — yi + pote,ni — i — zi + (1 — po)72) Lz, (2, 72, v)

exp ¢z/ﬂ_l) V¢i'/i+y_1(1 _ ¢i)zi
L, (p2, 72, v / / {( ) B(y; +v,z; +1)

Tz_yz+ﬂ27'2 1 (1 _ Wi)ni_ri_zi+(1_ﬂ2)72“l
1

B(r; — yi + pota, ni —ri — 2 + (1 — po)72)

and

X } d7r,d¢l
We first obtain 2; from equation (3.9). Then for each z; we fill in the
(pi, i, &;) using equations (3.7) and (3.8). We draw 1000 values for z;, 1 = 1,...,¢
from the equation (3.9). To draw samples from (3.8), we use Metropolis algo-
rithm with proposal density gq(7;, ¢; | yi,7i, zi, ). Assuming the chain is at the
h jterate, then the jumping probability to the (s + 1) iterate is Az 511 =
min{1, (p(r{°, ")/ (), 6))} where

exp(—¢i/mi) }V

b

¢(7Ti’ ¢Z) = {
Here (wgs), ¢§s)) are obtained independently from

¢§S) | 74, Yi, 23, V S Beta(y; + v,z + 1)
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and
ind
7r§5’ | 7iy Yir 25, 2, T2 '~ Beta(r; — y; + paTa,m; — 1 — zi + (1 — p2)72).

We ran the Metropolis step 100 times and we took the last one. We finally obtain
a sample (wgh),q’)gh),'yfh)) by taking %(h) = wgh)¢§h), h =1,..., M. Inference can
now be made in standard way.

4. APPLICATION TO THE NATIONAL HEALTH INTERVIEW SURVEY

In this section we discuss posterior inference about the parameters of the
nonignorable model for the NHIS data. We compare inference for the individual
procedure and the pooled procedure. In our discussion we have summarized the
posterior distribution of each of the parameters p, § and ~y for each state. To assess
the computation we have also computed the numerical standard errors (obtained
from the batch means method with batch length 25 for the 1,000 samples), 95%
credible interval, and probability that -y is less than one. Recall that when v = 1,
there is ignorable nonresponse.

First, we consider inference for p. The fourth and the fifth columns of Table 2
show the 95% credible intervals (pooled) for p and é by state. It is pleasant that
most of the intervals for p contain the observed values (see Table 1); generally
the observed values not within the 95% credible intervals are just slightly smaller.
As expected, the intervals based on the pooled procedure are generally contained
by those based on the individual procedure (column 2) with many of them a lot
narrower. The 95% credible intervals for § generally contain the observed values
(see Table 1). Except for a few states, when the credible intervals for the pooled
procedure are narrower than those for the individual procedure, the 95% credible
intervals for § are generally similar for the two procedures (columns 3 and 5).
Thus, there is much gain in precision of the pooled procedure over the individual
procedure for p, the parameter of greatest interest.

Second, we compare the posterior density of v for the pooled procedure (see
Table 4) with that for the individual procedure (see Table 3). First, the numer-
ical standard errors are a lot smaller for the pooled procedure. There are some
differences in the posterior mean (column labeled AVG), but the differences are
generally small; one notable exception is Colorado (0.91 vs. 0.77). However, the
posterior standard deviations (column labeled STD) are much smaller for the
pooled procedure, making the intervals much narrower. Except for a few states,
the Pr(y < 1|y,r) are very close to 1, making them very different from their
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counterparts in Table 3. A few of them show very small differences (e.g., compare
0.65 with 0.63 for Iowa).

Third, we have also considered an alternative odds ratio to 7;. Let v} denote
the ratio of the odds of success among the respondents to odds of success among
the nonrespondents for the i** area. Then, it is easy to show that

* Vi ]-_7Ti
g = o) (41)
- Vi

In (4.1), vf is a strictly increasing function of ; on (0,7; ') for each fixed m;
and 0 < ' < oo. That is, if 4 = 0 then o = 0 and if v, — 7ri“1 then
v; — oo. Thus, inference about 7; will be similar to inference about «}. In fact,
Pr(v; <1lly,r) = Pr(y; <1ly,r).

However, there are some differences between 7 and ;. First, while ; is
bounded above by 7, L 7v; is not bounded above. Thus, as expected ~; is more
variable than ~;. Second, the likelihood function for (p;,n;,~;) is simpler than
the one for (p;, m;,7;) because the likelihood function for (p;,m;,7;) contains a
rational function of m; and v} as well. However, in the present model it is possible
to make inference about v by using the relation in (4.1). We note that in our
applications, 7; are typically close to unity.

We compare posterior inference for v and v* (Table 4 and Table 5). As
explained earlier Pr(y < 1|y,r) = Pr(y* < 1|y,r) (hence the last columns
in both tables are the same). In general, the posterior density for v* can be
unstable. For example, for Idaho (a small state) compare the summaries for v*
in Table 5 of AVG = 9.06, STD = 86.1, NSE = 11.3 and the 95% credible interval
(0.23,38.9) with AVG = 1.00, STD = 0.030, NSE = 0.005 and the 95% credible
interval (0.92,1.04) in Table 4. Thus, while it is sensible to make inference about
~v*, its posterior density is very unstable. Therefore, it is more beneficial to use
v to study the extent of nonignorability.

In general, it appears to be true that smaller states, with smaller number
of nonrespondents, include v = 1 in their 95% credible intervals (i.e., ignorable
noresponse), and that the larger states with larger number of nonrespondents, do
not include v = 1 in their 95% credible intervals (i.e., nonignorable nonresponse).
Some exceptions are that some smaller states, with small nonrespondents, do not
include v = 1 (Delaware with 12 nonrespondents, DC with 14 nonrespondents,
WYV with 22 nonrespondents). Four states are borderline, and their 95% credi-
ble intervals almost include v = 1; they are Nebraska with 15 nonrespondents,
Nevada with 14 nonrespondents, Alaska with 3 nonrespondents, and Hawaii with
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13 nonrespondents. On the other hand, among the twenty states with small num-
ber of nonrespondents, some relatively large states with larger nonrespondents
include v = 1. For example, Alabama with 29 nonrespondents, Indiana with
42 nonrespondents, Minnesota with 32 nonrespondents, and Missouri with 38
nonrespondents.

It is true that if the probability that a household responds is 1, then v =
1. Thus, by default, for a state with very few nonrespondents there must be
ignorability. Some examples are Idaho, Montana, North Dakota, South Dakota,
Vermont and Wyoming, states with fewer than 5 nonrespondents. For these
states the 95% credible intervals for v do contain 1, and Pr(y < 1|y,r) are
0.39,0.77,0.90,0.79,0.94, 0.85. This is consistent with expectation.

Finally, we have performed a sensitivity analysis to assess how inference is
affected by the choice of the hyperparameters =, 7o and v. We kept p; and o
at the modal estimates, and set 7 at 100, 500,900, 75 at 3000, 6000, 9000, and v
at 1,9,17. For each of the 27 combinations, we obtained the modal estimates and
we obtained samples from the joint posterior density. To summarize the results,
we obtained the weighted parameters corresponding to p, -y, and ¢ as

¢ ¢ ¢
p=) fupi, =) v and 6= @
i=1 i=1 i=1

where 71; = n;/ Zle ng, 1 =1,...,£. We present the results in Table 6. It is true
that inference is virtually unchanged for p, v and §.

We have performed a full Bayesian analysis, and found that inference about p,
v and ¢ is similar to our empirical Bayes method. For example, for Colorado the
95% credible intervals for p, § and ~ are (0.30, 0.36), (0.87, 0.92) and (0.70, 0.84);
see Table 2 and Table 4.

5. CONCLUDING REMARKS

We have presented a Bayes empirical Bayes method to estimate the propor-
tion of doctor visits and the probability that a household responds in the NHIS.
In doing so we have been able to incorporate a degree of uncertainty about the
ignorability of the nonresponse mechanism. Our method assumes that the hyper-
parameters are fixed but unknown, and they are estimated using modal estimates
from the EM algorithm. The advantage of our method over a full Bayesian ap-
proach is that it does not require monitoring of a Markov chain Monte Carlo
algorithm. Thus, in our method the amount of work a practitioner needs to exert
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is minimized.

Misspecifying the true values of the hyperparameters is an important issue.
However, we have shown that moderate misspecification of the parameters 11, 72
and v have little consequence on inference about p; and §; as well as +;.

Our method is potentially useful to incorporate uncertainty about ignorabil-
ity of the nonresponse mechanism for many surveys. We have shown that it is
possible to decide for which states the nonresponse mechanism can be treated
as ignorable. For these states it is possible to use the ratio method for nonre-
sponse adjustment, but with some loss of precision. For the other states one
must be reluctant to use the ratio method. In either case our method provides
adjusted estimates with improved precision for p; and §; based on the extent of
nonignorability.

Our method can be extended to a full Bayesian one by modifying the al-
gorithm of Nandram (1998). This is desirable although uncertainty about the
hyperparameters might show little difference for the point estimates in our cur-
rent results. Qur Bayes empirical Bayes method is potentially useful to correct
at least partially for nonignorable nonresponse. One other important extension
is to polychotomous (more than two cells) data that are so prominent in many
complex surveys.

APPENDIX

A. Method of moment estimators

First, letting z; = 2?1:1 73;Yi; (i.e., the number of households with at least
one doctor visit), we observe that

zi | pi,rs %' Binomial(r;, p;) and p; % Beta(ui7, (1 — pi)71).
We obtain E(z; | r;) = rip1 and

1_
E(I?ln')=7‘iu1+n(n—l){w+uf}, i=1... 0
T+1

Then, we have

o | =

fi1 =

14
E z;.
i=1

Also, letting
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we define (1
fl’_l_(__t:_'f‘_ll’ if t>0,
T1I=9 4(1 =i £ 2
ol ’21)22“1", if ¢<0.
i=1 %4

Then, our estimator of 71 is 71 = max(1, 7).
Second, recalling that r; = 3774, ryj,
ind . .
ri | i, i,y '~ Binomial(ng, mi(1 — pi) + yimips),
y
pi ~ Beta(umi, (1 — p1)7),
jid
m; ~ Beta(uors, (1 — p2)72),
Yi w Gamma(v, v).
Then, letting jip = £7! Zle r;, approximately
ind . . R . . a
ri | v "% Binomial(ng, fia(1 — fu1) + Yifirfiz).
Thus, letting % = 1+ (r; — fi2)/fi1 /12, we take
o ;?ia 1f0<;}"1<ﬂ;17
"=V 05458 i 4 <0or % > Ayt

and
-1
~ ~ 2°
Zle (71 - Zf:l ’yl/e)

Finally, letting a; = (1 — /i1) + %;/11, we have approximately

=

ri | ind Binomial(n;, a;m;) and m; “d Beta(fiaTe, (1 — fie72)).

Then,
- o (1 — i )
E("'zz) = njails + nz(nz - l)a? {M + “2}
T2+1
and letting
¢ ¢
o it ] Neman
7 3.2 M2 ¢ g TH2(
i=1 @7 " Y i1 Gin
we take .
fia( ;#2), i t50
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Then, our estimator of 7 is
7o = max(l, 7).
B. Expectation-mazimization algorithm
The joint posterior density of i, 71, e, 72, v, and z for given (y;,r;) is

(/1,1,7'1,}14277-271/ Z I yar)
x H nZ:T (nz —rl) Blyi+zi+mm, ni—yi—zi+ (1 —p)71)
B(pii, (1~ p1)m1)

z;=0

% B( Ti — Yi + pame,n — i — 2z + (1 — p2)72)
B(pata, (1 — p2)72)

X Rzi(ya M2, TQ)}

VB(yZ+Vazl+l)

where
R,. ( lig, T 2) fo fo fl ¢z;7rz | yz)"'zazz)dd)zdﬂ'z
o fo f() f2 by T | yhrzvzi)dd)zdﬂ-z
with
i+v—1 )
o fexp(=gi/m) Y #VTT (1 — i)
f1(ismi | visris 2i) = { ﬂ'i Blyi+v, 7+ 1)
,n.;{'i—yi-i-ltzn—l (1 _ ﬂ_i)ni—ri—zi+(1—u2)m—1
B(ri —y; + pato, ng — 1 — 2z + (1 — pa)m2)
and

)} gt S

iy T iy T4y 21) = §€X - ]
f2(ismi | yis iy 21) { P< .y i B(pata, (1 — p2)72)

Note that if z; are given, the posterior density is separated into two parts,

B(yi+ zi + mmi, ni —yi — 2z + (1 — p1)m1)
B.1
11’177.1 |Z O(H (ulTla(l_ﬂl) ) ’ ( )

pa(p2, 72,v | 2) o HAuAiz, (B.2)
i=1
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where
B(ri — y; + por,ni — 1y — 2z + (1 — {2)T2)

B(pata, (1 — pa)72)

and
Ai2 =V B(yl + v,z + 1)Rzi(V: H2, 72)‘
Also observe that

p(zi|H1,ThM2,TZaY7r)=ﬁ‘_‘ Zi:(),---,ni"'ri, (B3)
where

.
s, o ( : 1)B<yz-+zz~+m,m—yz-—zi+(1—u1)n)B(yz-+v,zi+1)

i

XB(r; = y; + pate,ni — 1 — 2 + (1 — po) ) I, (2, 72, v)

exp gzsz/ﬂ'z v ¢zyi+V_1(1 - ¢i)2i
I (p2, T2, v / / { ( ) Bly; +v,z;+ 1)

F{i—yi‘*‘llsz—l (1- ﬂi)ni”Ti-Zi+(1—ﬂ2)T2"‘1

B(r; — yi + poo,ni — i — zi + (1 — po)72)

and

Note that I,, does not involve the m; and ¢;.

Starting with values for p;, 71, p2, 72, v obtained from the EM algorithm, we
compute the expected value of 2; from (B.3). The integral I, (12, 72, v) is obtained
using importance sample with importance function

¢%/i+’/-1(1 — ;)" Wiri—yﬁum—l (1- Wi)ni—ri‘zi+(1_ﬂ2)72‘1

Blyi + v, zi+ 1) B(ri — y; + pata, ni — i — 2 + (1 — pg)72)’

where .
¢i | YiryTiy 24 I'Q’d Beta(yl + vV, zZ; + ]')
and independently

ind
T | Yirriy 2~ Beta(r; — y; + pota,ny — i — 2z + (1 — pa)72).

The EM algorithm is constructed as follows. First, the expected values of z;
are easily obtained from the probability mass function in (B.3). These are then
substituted into (B.1) and (B.2). Second, (B.1) is maximized for x; and 7, and
(B.2) is maximized for ps, 72 and v. We iterate this procedure until convergence
which is rapid. The expectation step is the time consuming because the Monte
Carlo integration required, but maximization step is fast. The convergence is
reached within 10 iterations.
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TABLE 1 Observed proportion p of households with doctor visits and the proportion ) of
respondents for the 1995 NHIS data by state

State y r~y n—r P )

Alabama, 222 427 29 0.34 0.96
Alaska 15 29 3 034 0.94
Arizona, 175 421 36 0.29 0.94
Arkansas 90 252 12 0.26 0.97
California 1561 3415 289 0.31 0.95
Colorado* 144 385 62 0.27 0.90
Connecticut 170 386 31 0.31 0.95
Delaware* 37 63 12 0.37 0.89
DC* 31 66 14  0.32 0.87
Florida* 706 1542 219 0.31 0.91
Georgia 294 693 62 0.30 0.94
Hawaii 76 122 13 0.38 0.94
Idaho 44 106 1 029 0.99
Illinois 478 1220 131 0.28 0.93
Indiana 281 617 42  0.31 0.96
Towa 131 234 13 0.36 0.97
Kansas 111 264 20 0.30 0.95
Kentucky 198 382 38 0.34 0.94
Louisiana* 186 389 54  0.32 0.91
Maine 63 103 11 0.38 0.94
Maryland* 223 446 69 0.33 0.91
Massachusetts 268 642 53 0.29 0.94
Michigan 473 907 92 0.34 0.94
Minnesota 223 439 32 034 0.95
Mississippi 99 241 14 0.29 0.96
Missouri 260 594 38 0.30 0.96
Montana, 40 104 4 0.28 0.97
Nebraska 78 162 15 0.33 0.94
Nevada 60 113 14 0.35 0.93
New Hampshire 49 109 8 0.31 0.95
New Jersey 383 834 92 031 0.93
New Mexico 112 282 16 0.28 0.96
New York* 860 1962 278  0.30 0.91
North Carolina 310 707 72 0.30 0.93
North Dakota 29 61 4 0.32 0.96
Ohio 520 1019 75 0.34 0.95
Oklahoma 169 369 35 0.31 0.94
Oregon 134 362 12 0.27 0.98
Pennsylvania 567 1111 117 0.34 0.93
Rhode Island 43 109 6 0.28 0.96
South Carolina* 153 311 43  0.33 0.92
South Dakota 32 78 3 0.29 0.97

(continued)
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TABLE 1 Observed proportion p of households with doctor visits and the proportion § of
respondents for the 1995 NHIS data by state (continued)

State y r—y n-—r p 6

Tennessee 257 535 42 032 0.95
Texas 949 2282 187 0.29 0.95
Utah 58 163 11 026 0.9
Vermont 31 66 5 032 095
Virginia 312 621 63 033 094
Washington 259 517 47 033 094
West Virginia* 68 143 22 032 091
Wisconsin 244 499 22 033 097
Wyoming 21 38 2 036 097

NOTE : *States with 8% or more nonrespondents. Here, n is the sample size, r is the number of
responding households, and y is the number of households with at least one doctor visit among
the respondents.

TABLE 2 95% credible intervals for p and 6 for the individual and the pooled procedures by state

Individual Pooled

State p 6 P é

Alabama (0.308,0.394)  (0.937,0.969) (0.313,0.367)  (0.939,0.969)
Alaska (0.223,0.500) (0.808,0.967) (0.301,0.373) (0.858,0.965)
Arizona (0.258,0.353)  (0.920,0.957) (0.296,0.349) (0.919,0.955)
Arkansas (0.224,0.324)  (0.939,0.979) (0.275,0.339)  (0.931,0.973)
California (0.293,0.354)  (0.938,0.951) (0.317,0.343) (0.938,0.950)
Colorado* (0.231,0.361)  (0.866,0.916) (0.302,0.359) (0.866,0.913)
Connecticut (0.269,0.365)  (0.924,0.961) (0.300,0.354)  (0.923,0.959)
Delaware* (0.280,0.495) (0.813,0.932) (0.310,0.383) (0.853,0.941)
DC* (0.233,0.460) (0.793,0.918) (0.306,0.379) (0.828,0.923)
Florida* (0.283,0.379)  (0.899,0.921) (0.330,0.366)  (0.900,0.921)
Georgia (0.268,0.353)  (0.924,0.952)  (0.296,0.346) (0.923,0.951)
Hawaii (0.316,0.467)  (0.892,0.960) (0.315,0.387) (0.904,0.962)
Idaho (0.227,0.372)  (0.954,0.996)  (0.290,0.358)  (0.941,0.986)
Illinois (0.255,0.341)  (0.915,0.939) (0.298,0.336) (0.914,0.937)
Indiana (0.283,0.361) (0.939,0.966) (0.299,0.349) (0.938,0.965)
Towa (0.314,0.417)  (0.939,0.978) (0.314,0.372)  (0.939,0.975)
Kansas (0.253,0.362) (0.921,0.965) (0.294,0.353) (0.919,0.962)
Kentucky (0.301,0.403) (0.915,0.954) (0.318,0.375)  (0.919,0.955)
Louisiana* (0.281,0.399) (0.888,0.932) (0.318,0.374) (0.891,0.933)

(continued)
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TABLE 2 95% credible intervals for p and § for the individual end the pooled procedures by

State

JAI WON CHOI AND BALGOBIN NANDRAM

state (continued)

Individual

p

]

Pooled

b

o

Maine
Maryland*
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana
Nebraska
Nevada

New Hampshire
New Jersey
New Mexico
New York*
North Carolina
North Dakota
Ohio
Oklahoma,
Oregon
Pennsylvania
RhodeIsland
South Carolina
South Dakota.
Tennessee

*

Texas

Utah

Vermont
Virginia
Washington
West Virginia*
Wisconsin
Wyoming

(0.307,0.470)
(0.289,0.409)
(0.265, 0.348)
(0.312,0.394)
(0.301, 0.389)
(0.249, 0.354)
(0.274, 0.352)
(0.216, 0.363)
(0.270, 0.404)
(0.279,0.443)
(0.249, 0.399)
(0.283,0.372)
(0.245, 0.345)
(0.275, 0.370)
(0.273,0.363)
(0.239, 0.434)
(0.312,0.380)
(0.276,0.378)
(0.236,0.318)
(0.308, 0.390)
(0.222,0.370)
(0.283,0.408)
(0.217, 0.390)
(0.291, 0.376)
(0.273,0.338)
(0.213,0.342)
(0.239, 0.429)
(0.301, 0.389)
(0.298, 0.390)
(0.260, 0.421)
(0.297,0.371)
(0.245,0.489)

(0.885,0.961)
(0.882,0.924)
(0.928,0.957)
(0.923, 0.949)
(0.934,0.966)
(0.932,0.974)
(0.941, 0.968)
(0.924,0.985)
(0.900, 0.961)
(0.873,0.951)
(0.902, 0.972)
(0.914, 0.942)
(0.935,0.974)
(0.899, 0.920)
(0.917,0.947)
(0.882,0.977)
(0.942,0.962)
(0.915,0.954)
(0.957,0.985)
(0.922,0.945)
(0.913, 0.979)
(0.886,0.934)
(0.913,0.985)
(0.931,0.962)
(0.937, 0.952)
(0.912,0.970)
(0.879,0.973)
(0.919, 0.950)
(0.923,0.956)
(0.858, 0.934)
(0.955,0.980)
(0.871,0.983)

(0.313,0.383)
(0.328,0.384)
(0.295, 0.344)
(0.331,0.375)
(0.311, 0.367)
(0.291, 0.349)
(0.296, 0.347)
(0.286, 0.359)
(0.303,0.368)
(0.310, 0.378)
(0.296, 0.366)
(0.316,0.358)
(0.286, 0.346)
(0.326,0.359)
(0.308, 0.354)
(0.293, 0.367)
(0.324, 0.364)
(0.305,0.361)
(0.277,0.331)
(0.333,0.372)
(0.288, 0.358)
(0.320,0.377)
(0.290, 0.362)
(0.309, 0.363)
(0.297, 0.328)
(0.285,0.351)
(0.298,0.371)
(0.321, 0.370)
(0.316,0.367)
(0.312, 0.375)
(0.304, 0.355)
(0.300,0.372)

(0.899, 0.965)
(0.888,0.927)
(0.926,0.954)
(0.925,0.948)
(0.935,0.966)
(0.926,0.970)
(0.940, 0.966)
(0.919,0.974)
(0.903,0.961)
(0.888,0.954)
(0.904, 0.969)
(0.915,0.941)
(0.929, 0.970)
(0.900,0.919)
(0.916,0.945)
(0.892, 0.973)
(0.942,0.963)
(0.915,0.953)
(0.952,0.976)
(0.923,0.946)
(0.904,0.972)
(0.890,0.935)
(0.912,0.975)
(0.931,0.961)
(0.936,0.951)
(0.907,0.965)
(0.887,0.970)
(0.921,0.950)
(0.925, 0.956)
(0.871,0.936)
(0.955,0.976)
(0.888,0.975)

NOTE : p is the proportion of households with at least one visit and § the proportion of respon

dents.
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TABLE 3 Summaries for posterior density of v for the individual procedure by state

State AVG STD NSE Interval Probability
Alabama 0.971 0.058 0009 (0.871, 1.071) 0.652
Alaska 0.949 0.130 0.021 (0.687, 1.195) 0.638
Arizona 0.950 0.079 0.010 (0.815, 1.084) 0.693
Arkansas 0.957 0.057 0.008 (0.845, 1.052) 0.732
California 0.960 0.070 0.010 (0.847, 1.078) 0.678
Colorado* 0.909 0.138 0.020 (0.687, 1.155) 0.709
Connecticut 0.956 0.074 0.010 (0.829, 1.082) 0.682
Delaware* 0.953 0.147 0.022 (0.695, 1.228) 0.615
DC* 0.922 0.172 0.025 (0.627, 1.244) 0.656
Florida* 0.940 0.110 0.015 (0.767, 1.132) 0.668
Georgia 0.952 0.079 0.012 (0.819, 1.086) 0.680
Hawaii 0.972 0.085 0.013 (0.816, 1.128) 0.610
Idaho 0.983 0.032 0.004 (0.907, 1.034) 0.688
Illinois 0.936 0.095 0.013 (0.784, 1.100) 0.705
Indiana 0.965 0.061 0.009 (0.860, 1.068) 0.674
Towa 0.979 0.050 0.007 (0.885, 1.065) 0.632
Kansas 0954 0.074 0.010 (0.821, 1.080) 0.688
Kentucky 0.961 0.080 0.011 (0.825, 1.100) 0.652
Louisiana* 0.943 0.109 0.016 (0.765, 1.135) 0.666
Maine 0.971 0.089 0.012 {0.808, 1.133) 0.607
Maryland* 0944 0.117 0.016 (0.755, 1.151) 0.653
Massachusetts 0.952 0.074 0.010 (0.827, 1.079) 0.697
Michigan 0.962 0.078 0.011 (0.835, 1.096) 0.649
Minnesota 0.969 0.061 0.009 (0.863, 1.075) 0.656
Mississippi 0.960 0.062 0.009 (0.844, 1.065) 0.701
Missouri 0.963 0.059 0.008 (0.861, 1.064) 0.688
Montana 0.961 0.060 . 0.009 (0.834, 1.060) 0.709
Nebraska 0.956 0.084 0.012 (0.804, 1.105) 0.665
Nevada 0.95¢ 0.104 0.015 (0.767, 1.139) 0.664
New Hampshire 0.955 0.079 0.011 (0.799, 1.093) 0.679
New Jersey 0.950 0.090 0.012 (0.804, 1.105) 0.667
New Mexico 0.960 0.061 0.009 (0.847, 1.062) 0.705
New York* 0934 0.111 0.017 (0.760, 1.131) 0.680

North Carolina  0.948 0.086 0.013 (0.806, 1.097) 0.683
North Dakota 0.959 0.084 0.013 (0.789, 1.108) 0.660

Ohio 0.969 0.059 0.009 (0.871, 1.070) 0.660
Oklahoma 0.953 0.082 0.013 (0.812, 1.096) 0.686
Oregon 0.971 0.040 0.006 (0.894, 1.038) 0.716
Pennsylvania, 0.961 0.081 0.011 (0.829, 1.101) 0.650
Rhode Island 0.95¢ 0.071 0.010 (0.813, 1.076) 0.707
South Carolina* 0.946 0.109 0.015 (0.765, 1.136) 0.657
South Dakota 0.962 0.064 0.009 (0.824, 1.071) 0.697

(continued)
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TABLE 3 Summaries for posterior density of v for the individual procedure by state (continued)

State AVG STD NSE Interval Probability
Tennessee 0.963 0.067 0.010 (0.849, 1.077) 0.667
Texas 0.953 0.072 0.011 (0.837, 1.076) 0.700
Utah 0.943 0.079 0.011 (0.791, 1.076) 0.724
Vermont 0.955 0.090 0.014 (0.773, 1.115) 0.668
Virginia 0.958 0.081 0.010 (0.825, 1.098) 0.660

Washington 0.963 0.074 0.010 (0.838, 1.091) 0.654
West Virginia* 0.938 0.125 0.017 (0.725, 1.163) 0.664
‘Wisconsin 0.978 0.041 0.005 (0.903, 1.047) 0.665
Wyoming 0.967 0.08 0.013 (0.790, 1.125) 0.639

TABLE 4 Summaries for posterior density of vy for the pooled procedure by state

State AVG STD NSE Interval Probability
Alabama 0.969 0.023 0.003 (0.923, 1.012) 0.920
Alaska 0.841 0.087 0.008 (0.673, 0.998) 0.977
Arizona 0.911 0.030 0.004 (0.852, 0.969) 0.999
Arkansas 0.965 0.036 0.004 (0.885, 1.025) 0.833
California 0.933 0.012 0.001 (0.910, 0.957) 1.000
Colorado* 0.768 0.035 0.006 (0.697, 0.831) 1.000
Connecticut 0.928 0.030 0.005 (0.865, 0.984) 0.992
Delaware* 0.804 0.065 0.010 (0.674, 0.929) 1.000
DC* 0.736 0.071 0.012 (0.592, 0.873) 1.000
Florida* 0.839 0.017 0.002 (0.805, 0.872) 1.000
Georgia 0.913 0.024 0.004 (0.865, 0.958) 1.000
Hawaii 0.916 0.043 0.005 (0.822, 0.992) 0.984
Idaho 1.001 0.031 0.005 (0.919, 1.036) 0.388
Illinois 0.868 0.020 0.003 (0.830, 0.907) 1.000
Indiana 0.959 0.022 0.003 (0.916, 1.003) 0.967
Towa 0.988 0.027 0.003 (0.922, 1.031) 0.653
Kansas 0.926 0.035 0.005 (0.847, 0.989) 0.986
Kentucky 0.917 0.027 0.003 (0.861, 0.968) 0.999
Louisiana* 0.847 0.029 0.004 (0.782, 0.903) 1.000
Maine 0.915 0.049 0.006 (0.806, 1.000) 0.974
Maryland* 0.834 0.028 0.004 (0.776, 0.884) 1.000
Massachusetts  0.922 0.024 0.003 (0.872, 0.969) 1.000
Michigan 0.918 0.018 0.002 (0.882, 0.952) 1.000
Minnesota 0.959 0.025 0.004 (0.907, 1.006) 0.951
Mississippi 0.955 0.037 0.005 (0.881, 1.018) 0.896
Missouri 0.962 0.023 0.004 (0.912, 1.004) 0.953
Montana 0.962 0.046 0.006 (0.856, 1.031) 0.773

(continued)
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TABLE 4 Summaries for posterior density of vy for the pooled procedure by state (continued)

State AVG STD NSE Interval Probability
Nebraska 0.909 0.044 0.006 (0.811, 0.987) 0.988
Nevada 0.872 0.051 0.009 (0.764, 0.970) 0.998
New Hampshire 0919 0.053 0.007 (0.810, 1.015) 0.943
New Jersey 0.889 0.021 0.003 (0.850, 0.929) 1.000
New Mexico 0.958 0.033 0.005 (0.885, 1.021) 0.897
New York* 0.832 0.015 0.002 (0.802, 0.862) 1.000

North Carolina  0.894 0.022 0.003 (0.850, 0.937) 1.000
North Dakota 0.918 0.066 0.009 (0.773, 1.021) 0.901

Ohio 0.962 0.017 0.002 (0.926, 0.995) 0.988
Oklahoma 0.907 0.030 0.004 (0.848, 0.961) 0.997
Oregon 1.001 0.022 0.003 (0.953, 1.035) 0.446

Pennsylvania 0.910 0.018 0.002 (0.875, 0.946) 1.000
Rhode Island 0.932 0.057 0.007 (0.805, 1.025) 0.886
South Carolina* 0.849 0.033 0.004 (0.781, 0.910) 1.000
South Dakota 0.952 0.054 0.008 (0.829, 1.031) 0.787

Tennessee 0.943 0.024 0.003 (0.895, 0.987) 0.996
Texas 0.928 0.015 0.002 (0.899, 0.957) 1.000
Utah 0.908 0.049 0.008 (0.806, 1.000) 0.975
Vermont 0.902 0.067 0.011 (0.764, 1.016) 0.940
Virginia 0.912 0.022 0.003 (0.867, 0.958) 1.000
‘Washington 0.928 0.024 0.003 (0.880, 0.972) 1.000
West Virginia* 0.816 0.051 0.007 (0.715, 0.912) 1.000
Wisconsin 1.006 0.018 0.002 (0.964, 1.034) 0.320
Wyoming 0.928 0.070 0.012 (0.771, 1.029) 0.851

TABLE 5 Summaries for posterior density of v* for the pooled procedure by state

State AVG STD NSE Interval Probability
Alabama 0.612 0.371 0.040 (0.286, 1.459) 0.920
Alaska 0.339 2728 0.384 (0.065, 0.962) 0.977
Arizona 0.284 0.101 0.010 (0.160, 0.539) 0.999

Arkansas 0.860 2.031 0.272 (0.204, 3.337) 0.833
California  0.330 0.056 0.007 (0.236, 0.459) 1.000
Colorado*  0.106 0.021 0.004 (0.070, 0.153) 1.000

Connecticut  0.342 0.145 0.018 (0.175, 0.684) 0.992
Delaware*  0.142 0.068 0.009 (0.065, 0.318) 1.000
DC* 0.097 0.038 0.007 (0.045, 0.196) 1.000
Florida* 10 0.155 0.022 0.004 (0.117, 0.204) 1.000
Georgia 0.280 0.077 0.013 (0.171, 0.458) 1.000
Hawaii 0.346 0.353 0.059 (0.131, 0.817) 0.984

(continued)
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TABLE 5 Summaries for posterior density of v* for the pooled procedure by state (continued)

State AVG STD NSE Interval Probability
Idaho 9.060 86.112 11.292 (0.232, 38.905) 0.388
Tllinois 0.188  0.034 0.005 (0.134, 0.263) 1.000
Indiana 0.524 0.595 0.081 (0.262, 1.076) 0.967
Towa 1.470 4417 0.797  (0.290, 5.993) 0.653
Kansas 0.359 0.388 0.059 (0.161, 0.766) 0.986
Kentucky 0.208  0.100 0.012 (0.171, 0.521) 0.999
Louisiana* 0.167 0.037 0.005 (0.110, 0.252) 1.000
Maine 10 0.404 1.176  0.174  (0.127, 1.008) 0.974
Maryland* 0.153 0.030 0.004 (0.100, 0.217) 1.000
Massachusetts 0.307 0.093 0.012 (0.180, 0.535) 1.000
Michigan 0.287 0.057 0.008 (0.197, 0.420) 1.000
Minnesota 0.533 0475 0.075  (0.246, 1.201) 0.951
Mississippi 0762  2.841 0.386 (0.193, 2.207) 0.896
Missouri 0.594 2.147 0.312  (0.258, 1.134) 0.953
Montana 1.940 13418 1994 (0.170, 5.758) 0.773
Nebraska 0.310 0.227 0.030 (0.127, 0.742) 0.988
Nevada 0.224 0122 0.022 (0.099, 0.533) 0.998
New Hampshire 10 0.556  3.616  0.487  (0.127, 1.702) 0.943
New Jersey 0.224  0.045 0.007 (0.154, 0.327) 1.000
New Mexico 0.651 1.134 0.145 (0.210, 2.321) 0.897
New York* 0.148 0.021  0.003 (0.112, 0.192) 1.000
North Carolina 0.233  0.050 0.007 (0.154, 0.344) 1.000
North Dakota 0.554 1.067 0.133  (0.102, 2.535) 0.901
Ohio 0.499 0.155 0.020 (0.296, 0.883) 0.988
Oklahoma 0.274 0.102 0.010 (0.156, 0.487) 0.997
Oregon 3.625 17.381 2.262  (0.411, 18.676) 0.446
Pennsylvania 0.269  0.053 0.006 (0.186, 0.402) 1.000

Rhode Island 10 1.063 6.146  0.788  (0.122, 3.152) 0.886
South Carolina* 0.172 0.042 0.005 (0.107, 0.275) 1.000

South Dakota 1.571 13.754 1.934  (0.139, 7.220) 0.787
Tennessee 0.397 0.166 0.019  (0.223, 0.749) 0.996
Texas 0.315 0.062 0.008 (0.217, 0.465) 1.000
Utah 0.336 0.357 0.040 (0.119, 0.998) 0.975
Vermont 0.444 0.896 0.126  (0.099, 1.935) 0.940
Virginia 0.276 0.068 0.010 (0.177, 0.464) 1.000
Washington 0.329 0.097 0.011  (0.195, 0.567) 1.000
West Virginia* 0.145 0.052  0.008 (0.077, 0.265) 1.000
Wisconsin 10 2.988 10.954 1.456  (0.480, 14.614) 0.320

Wyoming 1.304 8525 1.181  (0.103, 5.597) 0.851
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TABLE 6 Sensitivity of the 95% credible intervals for p, v, and § by choice of 11,72, and v

Ti 72 v P 5y é
100 3000 1 (0.314, 0.330) (0.929, 0.981) (0.940, 0.949)
9 (0.314, 0.330) (0.929, 0.982) (0.940, 0.950)
17 (0314, 0.330) (0.929, 0.979) (0.940, 0.949)
6000 1 (0.315, 0.331) (0.927, 0.976) (0.939, 0.951)
(0.315, 0.331) (0.927, 0.977) (0.939, 0.951)
17 (0.314, 0.331) (0.928, 0.978) (0.939, 0.951)
9000 1 (0.314, 0.331) (0.928, 0.976) (0.939, 0.952)
(0.314, 0.331) (0.929, 0.974) (0.939, 0.952)
17 (0314, 0.331) (0.929, 0.975) (0.940, 0.952)
500 3000 1 (0318, 0.332) (0.929, 0.980) (0.939, 0.949)
(0.318, 0.331) (0.929, 0.981) (0.940, 0.950)
17 (0.318, 0.332) (0.929, 0.980) (0.940, 0.950)
6000 1 (0.318, 0.332) (0.927, 0.975) (0.940, 0.951)
(0.318, 0.332) (0.928, 0.975) (0.940, 0.951)
17 (0.318, 0.332) (0.928, 0.975) (0.939, 0.951)
9000 1 (0.318, 0.332) (0.928, 0.974) (0.939, 0.952)
(0.318, 0.332) (0.928, 0.974) (0.939, 0.951)
17 (0.318, 0.332) (0.928, 0.975) (0.940, 0.952)
900 3000 1 (0.310, 0.332) (0.928, 0.982) (0.940, 0.950)
(0.320, 0.332) (0.928, 0.981) (0.940, 0.950)
17 (0319, 0.332) (0.929, 0.980) (0.940, 0.950)
6000 1 (0.319, 0.332) (0.927, 0.976) (0.939, 0.951)
9 (0319, 0.332) (0.929, 0.975) (0.940, 0.951)
17 (0319, 0.332) (0.927, 0.976) (0.940, 0.951)
9000 1 (0.320, 0.332) (0.927, 0.974) (0.940, 0.951)
9 (0.319, 0.332) (0.927, 0.975) (0.940, 0.952)
17 (0319, 0.332) (0.928, 0.976) (0.940, 0.952)

NOTE : Inference about p, v and § is not sensitive to the misspecifications of the hyperparameters.
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