DOI QR코드

DOI QR Code

Effect of Sarcoplasmic Protein and NaCl on Heating Gel from Fish Muscle Surimi Prepared by Acid and Alkaline Processing

산과 알칼리 공정으로 제조한 어육 수리미의 가열 겔에 미치는 근형질단백질과 NaCl의 영향

  • 박주동 (경상대학교 해양생물이용학부/해양산업연구소) ;
  • 윤수성 (경상대학교 해양생물이용학부/해양산업연구소) ;
  • 정춘희 (경상대학교 해양생물이용학부/해양산업연구소) ;
  • 조민성 (부경대학교 식품공학과) ;
  • 최영준 (경상대학교 해양생물이용학부/해양산업연구소)
  • Published : 2003.06.01

Abstract

Surimi yields from acid and alkaline processing of 5 fishes were compared to those from conventional processing Effect of sarcoplasmic protein and NaCl on heating gel from acid and alkaline surimi were also investigated by punch test and color. Yield of alkaline surimi was higher than that of conventional surimi. However, the breaking force, deformation and whiteness of heating gel from alkaline surimi were lower than those of heating gel from conventional surimi. The sarcoplasmic protein increased a breaking force and a deformation of gel. A breaking force was decreased, but deformation not significantly with NaCl concentration. Myosin heavy chain (MHC) and actin were greatly degraded in acid processing. Alkaline process for surimi is a valuable way of increasing the utilization of frozen and pelagic fishes, and making kamaboko-type products.

pH 2.5와 pH 10.5에서 어육 단백질을 용해시키고, pH 5.0부근에서 침전 단백질을 회수한 후, pH를 중성 부근으로 재조절하여 제조한 7종 어류의 산과 알칼리 수리미의 수율을 수세 수리미와 비교하고 이들 수리미의 가열 젤에 미치는 근형질 단백질과 NaCl의 영향을 punch test와 색차계로 측정하였다. 알칼리 수리미의 수율은 수세 수리미와 산 수리미에 비하여 높았으나, 파괴강도, 변형값 및 백색도는 낮았다. 근형질 단백질을 첨가한 가열 겔의 파괴강도는 첨가하지 않은 가열 겔에 비하여 유의적으로 높은 파괴강도와 변형 값을 가졌으나, 백색도는 다소 감소하였다. 염은 첨가 농도가 증가함에 따라 파괴강도 값은 감소하였으나, 변형값은 유의적인 차이를 보이지 않았고, 백색도는 다소 증가하는 것으로 나타났다. SDS-PAGE 상에서 산 수리미의 myosin heavy chain과 actin은 급속히 분해하였으며, 수세 수리미와 알칼리 수리미 사이에는 큰 차이가 없었다. 알칼리 수리미의 수율과 가열 겔의 파괴강도, 변형 및 백색도 값에 미루어 알칼리 수리미 제조 공정은 kamaboko형의 연제품 제조에 활용이 가능한 것으로 판단하였다.

Keywords

References

  1. Toyoda K, Kimura I, Fujita T, Noguchi SF, Lee CM. 1992. The surimi manufacturing process. In Surimi Technology. Lanier TC, Lee CM, eds. Marcel Dekker Inc., New York. p 79-112.
  2. Park JW, Lin TM, Yongsawatdigul J. 1997. New developments in manufacturing of surimi and surimi seafood. Food Reviews International 13: 577-610. https://doi.org/10.1080/87559129709541141
  3. Choi YJ, Park JW. 2002. Acid-aided protein recovery from enzyme-rich Pacific whiting. J Food Sci 67: 2962-2969. https://doi.org/10.1111/j.1365-2621.2002.tb08846.x
  4. Undeland I, Kelleher SD, Hultin HO. 2002. Recovery of functional proteins from herring (Clupea harengus) light muscle by an acid or alkaline solubilization process. J Agric Food Chem 50: 7371-7379. https://doi.org/10.1021/jf020199u
  5. Park JW, Morrissey MT. 2000. Manufacturing of surimi from light muscle fish. In Surimi and Surimi Seafood. Park JW, ed. Marcel Dekker Inc., New York. p 23-58.
  6. Park JW, Korhonen RW, Lanier TC. 1990. Effect of rigor mortis on gel-forming properties of surimi and unwashed mince prepared from tilapia. J Food Sci 55: 353-360. https://doi.org/10.1111/j.1365-2621.1990.tb06761.x
  7. Shimizu Y, Nishioka F. 1974. Interactions between horse mackerel actomyosin and sarcoplasmic proteins during heat coagulation. Nippon Suisan Gakkaishi 40: 231-234. https://doi.org/10.2331/suisan.40.231
  8. Okazaki E, Kanna K, Suzuki T. 1986. Effect of sarcoplasmic protein on rheological properties of fish meat gel formed by retort-heating. Nippon Suisan Gakkaishi 52: 1821-1827. https://doi.org/10.2331/suisan.52.1821
  9. Nakagawa T, Nagayama F, Ozaki H, Watabe S, Hashimoto K. 1989. Effect of glycolytic enzymes on the gel-forming ability of fish muscle. Nippon Suisan Gakkaishi 55: 1045-1050. https://doi.org/10.2331/suisan.55.1045
  10. Morioka K, Shimizu Y. 1990. Contribution of sarcoplasmic proteins to gel formation of fish meat. Nippon Suisan Gakkaishi 56: 929-933. https://doi.org/10.2331/suisan.56.929
  11. Morioka K, Shimizu Y. 1993. Relationship between the heatgelling property and composition of fish sarcoplasmic proteins. Nippon Suisan Gakkaishi 59: 1631.
  12. Roussel H, Cheftel JC. 1990. Mechanism of gelation of sardine proteins: influence of thermal processing and of various additives on the texture and protein solubility of kamaboko gels. Int J Food Sci Technol 25: 260-280. https://doi.org/10.1111/j.1365-2621.1990.tb01083.x
  13. Okada M. 1964. Effect of washing on the jelly forming ability of fish meat. Nippon Suisan Gakkaishi 30: 255-261. https://doi.org/10.2331/suisan.30.255
  14. Park JW. 1995. Surimi gel colors as affected by moisture content and physical conditions. J Food Sci 60: 15-18. https://doi.org/10.1111/j.1365-2621.1995.tb05596.x
  15. Lowry OH, Rosebrough NJ, Farr AI, Randall RJ. 1951. Protein measurement with Folin phenol reagent. J Biol Chem 193: 256-275.
  16. Laemmli UK. 1970. Cleavage of structural proteins during assembly of the head of bacteriopahge T4. Nature 227: 680- 685. https://doi.org/10.1038/227680a0
  17. JMP. 2002. Standard least squares. In Statistics and Graphics Guide. SAS Institute, Cary, NC. p 179-209.
  18. Lee MV, Lampila LE, Crawford DL. 1990. Yield and composition of surimi from Pacific whiting and the effect of various protein additives on gel strength. J Food Sci 55: 83-86. https://doi.org/10.1111/j.1365-2621.1990.tb06022.x
  19. Crawford DL, Law DK, Gabbitt JK. 1972. Yield and acceptability of machine separated minced flesh some marine food fish. J Food Sci 37: 551-553. https://doi.org/10.1111/j.1365-2621.1972.tb02690.x
  20. Hashimoto A, Katoh N, Nozaki H, Arai K. 1985. Inhibiting effect of various factors in muscle of Pacific mackerel on gel forming ability. Nippon Suisan Gakkaishi 51: 425-432. https://doi.org/10.2331/suisan.51.425
  21. Morioka K, Kurashima K, Shimizu Y. 1992. Heat-gelling properties of fish sarcoplasmic protein. Nippon Suisan Gakkaishi 58: 767-772. https://doi.org/10.2331/suisan.58.767
  22. Ninomiya K, Ookawa T, Tsuchiya T, Masumoto JJ. 1990. Concentration of fish water soluble protein and its gelation properties. Nippon Suisan Gakkaishi 56: 1641-1645. https://doi.org/10.2331/suisan.56.1641
  23. Niwa E. 1992. Chemistry of surimi gelation. In Surimi Technology. Lanier TC, Lee CM, eds. Marcel Dekker Inc., New York. p 389-427.
  24. Shimizu Y, Simidu W. 1955. Studies on jelly strength of kamaboko-IX. On influence of salts (2)-sodium chloride. Nippon Suisan Gakkaishi 21: 501 https://doi.org/10.2331/suisan.21.501
  25. Chung YC, Richardson L, Morrissey MT. 1993. Effect of pH and NaCl on gel strength of Pacific whiting surimi. J Aquatic Food Product Technol 2: 19-35. https://doi.org/10.1300/J030v02n03_03
  26. Damodaran S. 1996. Amino acids, peptides, and proteins. In Food Chemistry. Fennema OR, ed. Marcel Dekker Inc, New York. p 321-429.
  27. Kim YS, Park JW, Choi YJ. 2002. Physicochemical characteristics of fish proteins treated at various pH. Abstract No 56-4 presented at 2002 Annual Meeting of the Institute of Food Technologists. Anaheim, CA, USA.

Cited by

  1. Effect of NaCl on physical characteristics and qualities of chicken breast surimi prepared by acid and alkaline processing vol.44, pp.10, 2011, https://doi.org/10.1016/j.lwt.2011.07.005
  2. Optimum Formulation of Starch and Non-muscle Protein for Alkali Surimi Gel from Frozen White Croaker vol.32, pp.7, 2003, https://doi.org/10.3746/jkfn.2003.32.7.1026
  3. Protein isolation from blue mussels (Mytilus edulis) using an acid and alkaline solubilisation technique-process characteristics and functionality of the isolates vol.92, pp.15, 2012, https://doi.org/10.1002/jsfa.5723
  4. Effects of pH Adjustment and Sodium Chloride Addition on Quality Characteristics of Surimi Using Pork Leg vol.27, pp.1, 2007, https://doi.org/10.5851/kosfa.2007.27.1.35
  5. Characteristics of Sarcoplasmic Proteins and Their Interaction with Surimi and Kamaboko Gel vol.74, pp.1, 2009, https://doi.org/10.1111/j.1750-3841.2008.01009.x
  6. Contribution of Sarcoplasmic Proteins to Myofibrillar Proteins Gelation vol.77, pp.2, 2012, https://doi.org/10.1111/j.1750-3841.2011.02521.x
  7. Physico-chemical and Sensory Characteristics of Chicken Breast Surimi with Washing and the Addition of Sodium Chloride vol.27, pp.2, 2007, https://doi.org/10.5851/kosfa.2007.27.2.142
  8. The Acid and Alkaline Solubilization Process for the Isolation of Muscle Proteins: State of the Art vol.2, pp.1, 2009, https://doi.org/10.1007/s11947-008-0088-4
  9. Alternative Techniques for Producing a Quality Surimi and Kamaboko from Common Carp (Cyprinus carpio) vol.73, pp.9, 2008, https://doi.org/10.1111/j.1750-3841.2008.00937.x
  10. Effect of Cryoprotectants on the Physico-chemical Characteristics of Chicken Breast Surimi Manufactured by pH Adjustment during Freezing Storage vol.27, pp.3, 2007, https://doi.org/10.5851/kosfa.2007.27.3.267
  11. 기능성 어육단백질의 젤화 특성과 산업적 응용-1. 가열변성 중 화학결합에 미치는 pH의 영향 vol.33, pp.10, 2003, https://doi.org/10.3746/jkfn.2004.33.10.1668
  12. 기능성 어육단백질의 젤화 특성과 산업적 응용-2. 알칼리 공정으로 회수한 어육, 닭고기 가슴살 및 돼지 후지 육 기능성 단백질 젤의 특성과 최적화 vol.33, pp.10, 2003, https://doi.org/10.3746/jkfn.2004.33.10.1676
  13. 분쇄닭가슴살의 수세 방법과 pH 조절 수준에 따른 Surimi의 이화학적 특성 vol.47, pp.6, 2003, https://doi.org/10.5187/jast.2005.47.6.1059
  14. 어육 단백질 회수를 위한 알칼리 Pilot 공정과 회수 단백질의 특성 vol.35, pp.8, 2003, https://doi.org/10.3746/jkfn.2006.35.8.1045
  15. 냉동변성방지제의 종류가 닭가슴살 수리미의 품질 특성에 미치는 영향 vol.49, pp.6, 2003, https://doi.org/10.5187/jast.2007.49.6.847
  16. 알칼리 처리하여 회수한 냉동깡치 어육 단백질의 Lysinoalanine 함량 vol.40, pp.6, 2003, https://doi.org/10.5657/kfas.2007.40.6.337
  17. 가열 젤 형성능을 가진 오징어 Surimi와 Surimi-based 제품을 위한 첨가물의 최적화 vol.44, pp.1, 2003, https://doi.org/10.5657/kfas.2011.44.1.037
  18. 식염 함량에 따른 식품 3D 프린팅용 연육 잉크의 적합성 조사 vol.53, pp.1, 2021, https://doi.org/10.9721/kjfst.2021.53.1.29