Properties of photoluminescience for ZnSe/GaAs epilayer grown by hot wall epitaxy

  • Hong, Kwangjoon (Depatrment of Physics, Chosun University) ;
  • Baek, Seungnam (Division of Metallurgical and Matrial Science Engineering, Chosun University)
  • Published : 2003.06.01

Abstract

The ZnSe epilayers were grown on the GaAs substrate by hot wall epitaxy. After the ZnSe epilayers treated in the vacuum-, Zn-, and Se-atmosphere, respectively, the defects of the epilayer were investigated by means of the low-temperature photoluminescence measurement. The dominant peaks at 2.7988 eV and 2.7937 eV obtained from the PL spectrum of the as-grown ZnSe epilayer were found to be consistent with the upper and the lower polariton peak of the exciton, $I_{2}$ ($D^{\circ}$, X), bounded to the neutral donor associated with the Se-vacancy. This donor-impurity binding energy was calculated to be 25.3 meV, The exciton peak, $I_{1}^{d}$ at 2.7812 eV was confirmed to be bound to the neutral acceptor corresponded with the Zn-vacancy. The $I_{1}^{d}$ peak was dominantly observed in the ZnSe/GaAs : Se epilayer treated in the Se-atmosphere. This Se-atmosphere treatment may convert the ZnSe/GaAs : Se epilayer into the p-type. The SA peak was found to be related to a complex donor like a $(V_{se}-V_{zn})-V_{zn}$.

Keywords

References

  1. J. Apple. Phys. v.59 Raman scattering in novel ZnSe crystals J.Nishizawa;R.Suzuki;Y.Okuno https://doi.org/10.1063/1.336372
  2. Appl. Phys.Lett. v.57 Photoacoustic spectra of ZnSe R.M.Park;M.B.Troffer;C.M.Rouleau;J.M.Depuydt;M.A,Haase https://doi.org/10.1063/1.103919
  3. J.Apple.Lett. v.59 Band diagram of the polycrystalline ZnSe/CuGa(In)Se heterojunction M.A.Haase;J.Qiu;J.M.Dipuydt;H.Cheng https://doi.org/10.1063/1.105472
  4. Appl. Phys. Lett. v.59 Electronic properties of ZnSe-based heterojunction Solar cells. Part. Transport analysis H.Jeon;J.Ding;W.Patterson;A.V.Nurmikko;W.Xie;D.C.Grillo;M.Kobayshi;R.N.Gunshor https://doi.org/10.1063/1.105625
  5. Appl. Phys. Lett. v.60 Electronically active defects in ZnSe-based heterojunction Solar cell S.Guha;H.Munekata;F.K.LeGoues;L.L.Chang https://doi.org/10.1063/1.107465
  6. Appl. Phys. Lett. v.63 LED properties of ZnSe single crystal L.H.Kuo;L.Salamanca-Riba;J.M.Depuydt;H.Cheng;J.Qui https://doi.org/10.1063/1.110197
  7. Appl. Phys. Lett. v.71 Photoluminescience and Photocondutivity measurements on ZnSe M.Drechster;B.K.Meyer;D.M.Hofmann;P.Ruppert;D.Hommel https://doi.org/10.1063/1.119744
  8. Appl. Phys. Lett. v.71 Study of the Band Edge in ZnSe by photvoltic effect K.K.Fung;N.Wang;I.K.Sou https://doi.org/10.1063/1.119858
  9. Solid State Commun. v.64 Sturation Photoconductivity in ZnSe R.W.Jansen;O.F.Sankey https://doi.org/10.1016/0038-1098(87)91154-9
  10. Phys. Status Solidi A v.117 ZnSe and Cds : Preparation and property of single crystal M.Karai;K.Kido;H.Nait;K.Kurosawa;M.Okuda;T.Fujino;M.Kitagawa https://doi.org/10.1002/pssa.2211170140
  11. J.Appl.Phys. v.65 Properties of ZnSe single crystal thin film grown by LP-MOCVD H.Yang;A.Ishida;H.Fujiyasu;H.Kuwabara https://doi.org/10.1063/1.342722
  12. Thin Solid Films v.49 Energy bands of ZnSe in the chalcopyrite A.Lopez-Otero
  13. J.Crystal Growth v.117 The characterization of ZnSe/GaAs epilayers grown by hot wall epitaxy Sz.Fujita;Sg.Fujita https://doi.org/10.1016/0022-0248(92)90718-X
  14. J.Crystal Grtowth v.101 Il Nouvo Ciouvo Cinento M.Migita;A.Taike;M.Shiik;H.Yamamoto https://doi.org/10.1016/0022-0248(90)91090-D
  15. Phys. Rev v.B39 Crystal Orientation manual K.Akimoto;T.Miyajima;Y.Mori
  16. Phys. Rev. v.B7 Electroluminescience in licodoped ZnS:TmF$2^ 3 thin film device D.D.Sell;S.E.Stokowski;R.Dingel;J.V.Dilorenzo
  17. Appl. Phys. Lett. v.52 Microstructure and critical current density of zone melt textured ZnSe H.Cheng;J.M.Depuydt;J.E.Potts;T.L.Smith
  18. J. Crystal Growth v.101 A study on electrical and optical characteristics of ZnSe/GaAs self organized quantum dot K.Hingerl;H.Sitter;D.J.As;W.Rothemund https://doi.org/10.1016/0022-0248(90)90961-J
  19. J. Crystal Growth v.72 Surface photovoltage of ZnSe multi-quantum well structure T.Yao https://doi.org/10.1016/0022-0248(85)90114-9
  20. J.Appl.Phys. v.51 Structure analysis of low temperture processed schottky contacts to n-ZnSe Y.Shirakawa;H.Kukimoto https://doi.org/10.1063/1.327919
  21. Phys.Rev. v.B6 One stup metalorganic vapor phase epitaxy grown ZnSe visible laser using simultaneous impurity doping J.L.Merz;H.Kukimoto;K.Nassau;J.W.Shiever
  22. Phys. Rev. v.159 Carbon doping in Metalorganic vapor phase epitaxy R.R.Sharma;S.Rodriguez https://doi.org/10.1103/PhysRev.159.649
  23. Landolt-Bronstein : Numerical Data and Functional Relationships in Science and Technology(New Series,Group Ⅲ) v.17b O.Madelung
  24. Phys. Rev. v.B39 Improved stability of c-dopedn ZnSe grown by chemical beam epitaxy for hetrojunction bipolar transistor K.Shahzad;D.J.Olega;D.A.Cammaek
  25. J. Phys v.C17 Effects of substracte orientation, temperature, and hole concentration on the band gap energy of cabon doped ZnSe S.Myhailinko;J.l.Batsone;H.J.Hutchinson;J.W.Steel
  26. Phys.Rev. v.B36 Kinetic aspects in the vapor phase epitaxy of compound M.Isshiki;T.kyotani;K.Masumoto;W.Uchida;S.Suto
  27. Jpn. J. Appl. Phys. v.27 Carbon doped in metrolorganic vapor phase epitaxy K.Mochizuki;K.Masumoto https://doi.org/10.1143/JJAP.27.1669
  28. J.Crystal Growth v.135 Thermal dissociation of exitons bounds to netural acceptor in high purity ZnSe K.Mochizuki;K.Masumoto;T.Yasuda;Y.Sgawa;K.Kimoto https://doi.org/10.1016/0022-0248(94)90758-7
  29. J. Crystal Growth v.159 Excition power dependence of the near bandedge photoluminescience of semiconductors Yu.V.Korestelin;V.I.Kozlovsky;A.S.Nasibov;P.V.Shapkin https://doi.org/10.1016/0022-0248(95)00833-0
  30. Jpn. J. Appl. Phs. v.20 Enhanced hot electron photoluminescience from heavily carbon doped ZnSE T.Yao;Y.Makita;S.Maekawa https://doi.org/10.1143/JJAP.20.L741
  31. J. Crystal Growth v.59 Temperature dependence of the energy gap in semiconductors R.Bhargava https://doi.org/10.1016/0022-0248(82)90304-9
  32. J. Appl.Phs. v.64 Microwave absorption in single crystals of lanthanum aluminate K.Morimoto https://doi.org/10.1063/1.342444