Screening of Potential Compounds Promoting BDNF Production in Noradrenergic Locus Coeruleus Neurons

노르아드레날린성 신경세포에서의 BDNF 생산 증진 물질 탐색

  • 전홍성 (조선대학교 자연과학대학 생물과학부)
  • Published : 2003.06.01

Abstract

The locus coeruleus (LC) contains about half of the total number of noradrenergic neurons in the brain and those noradrenergic neurons from the LC innervate entire brain regions. The LC is a major common target region in several neurodegenerative disorders such as Alzheimer's, Pakinson's and Huntington's diseases. The brain-derived neurotrophic factor (BDNF) regulate neuronal cell survival and differentiation of central nervous system neurons, including LC noradrenergic neurons. In this study, various small molecules and growth factors were tested as candidates to promote the production of BDNF in LC noradrenergic neuronal cells. The molecules tested include neuropeptides, cytokines, growth factors, neurotransmitters, and intracellular signaling agents. Four small molecules or growth factors, FGF8b, BMP-4, forskolin, and dibutyryl cGMP, were found to increase the release of BDNF in LC noradrenergic neurons. Especially, BMP-4 significantly enhanced BDNF production over 2.5-fold in LC noradrenergic neurons.

Locus coeruleus (LC)에는 전체 노르아드레날린성 뉴런의 절반 가량이 모여 있는데, 여기서 노르아드레날린성 뉴런이 뇌의 거의 모든 부위로 신경자극을 보내게 된다. LC는 알츠하이머병, 파킨슨병, 헌팅턴병 같은 여러 가지 신경퇴행성 질환에서 공통적으로 타격을 받는 주요 부위이다. 뇌 유래 신경영양인자, BDNF가 LC 노르아드레날린성 뉴런을 포함한 중추신경계 뉴런들의 분화와 신경세포 생존에 중요한 조절자로 작용한다. 본 연구에서는 LC 노르아드레날린성 신경세포에서 여러 가지 작은 분자들과 성장인자들이 BDNF 생산을 촉진할 수 있는지를 조사하였다. 실험에 사용한 분자들로는 neuropeptides, cytokines, 성장인자, 신경전달물질들과 세포내 신호전달물질들이 포함되었다. 여러 가지 작은 분자들과 성장인자들 중에서 FGF8b, BMP-4, forskolin 그리고 dibutyrl cGMP가 LC 노르아드레날린성 뉴런에서 BDNF 분비를 뚜렷하게 증대시킨 것으로 판명되었다. 특히, BMP-4는 BDNF 생산을 2.5배 이상 증가시켰다. LC 노르아드레날린성 뉴런에서 BDNF를 증가시킨 물질들은 여러 가지 신경퇴행성 질환에서 신경세포가 손실되는 것을 막거나 지연시킬 수 있을 것이므로, 치료제나 증상완화제로서의 가능성이 높다.

Keywords

References

  1. Prog. Brain Res. v.88 Developmental aspects of the locus coeruleus-noradrenaline system Marshall, K. C.;M. J. Christie;P. G. Finlayson;J. T. Williams https://doi.org/10.1016/S0079-6123(08)63807-8
  2. Trends Neurosci. v.17 Neurotrophic factors: from molecule to man Linsay, R. M.;S. J. Wiegand;C. A. Altar;P. S. DiStefano https://doi.org/10.1016/0166-2236(94)90099-X
  3. Exp. Neurol. v.119 Differential actions of neurotrophins in the locus coeruleus and basal forebrain Frideman, W. J.;C. Ibanez;F. Hallbook;H. Persson;L. D. Cain;C. F. Dreyfus;I. B. Black https://doi.org/10.1006/exnr.1993.1007
  4. Nature v.367 Neurotrophin-3 prevents the death of adult central noradrenergic neurons in vivo Arenas, E.;H. Persson https://doi.org/10.1038/367368a0
  5. Brain Res. v.702 Opposing effects of morphin and the neurotrophins, NT-3, NT-4, and BDNF, on locus coeruleus neurons in vitro Sklair-Tavron, L.;E. J. Nestler https://doi.org/10.1016/0006-8993(95)01029-8
  6. Annu. Rev. Neurosci. v.19 Physiology of the neurotrophins Lewin, G. R.;Y. A. Barde https://doi.org/10.1146/annurev.ne.19.030196.001445
  7. J. Neurosci. v.20 Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system Cirelli, C.;G. Tononi
  8. J. Neurosci. v.18 Functional evidence that BDNF is an anterograde neuronal tropic factor in the CNS Fawcett, J.P.;S.X. Bamji;C.G. Causing;R. Aloyz;A.R. Ase;T.A. Reader;J.H. McLean;F.D. Miller
  9. J. Neurosci. v.17 Distribution of brain-derived neurotrophic factor(BDNF) protein nad mRNA in the normal adult rat CNS: evidence for anterograde axonal transport Conner, J. M.;J. C. Lauterbom;Q. Yan;C. M. Gall;S. Varon
  10. Learn. Mem. v.6 Activity-dependent activation of TrkB neurotrophin receptors in the adult CNS Aloyz, R. A.;J. P. Fawcett;D. R. Kaplan;R. A. Murphy;F. D. Miller
  11. Basic Neurochemistry Blood-brain-cerebrospinal fluid barriers Betz, A. L.;G. W. Goldstein;R. Katzman;G. Siegel(ed.);B. Agranoff(ed.);R.W. Albers(ed.);P. Molinoff(ed.)
  12. J. Neurosci. v.19 Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos Son, J. H.;H. S. Chun;T. H. Joh;S. Cho;B. Conti;J. W. Lee
  13. J. Neurobiol. v.50 BMP-2 and cAMP elevation confer locus coeruleus neurons responsiveness to multiple neurotrophic factors Reiriz, J.;P. C. Holm;J. Alberch;E. Arenas https://doi.org/10.1002/neu.10034
  14. Cell v.93 FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate Ye, W.;K. Shimamura;J. L. Rubenstein;M. A. Hynes;A. Rosenthal https://doi.org/10.1016/S0092-8674(00)81437-3
  15. J. Neirosci v.18 Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP Li, W.;C. A. Cogswell;J. J. LoTurco
  16. J. Biol. Chem. v.273 Activity-dependent release of brain-derived neurotrophic factor underlies the neuroprotective effects of N-methyl-D-aspartate Marini, A. M.;S. J. Rabin;R. H. Lipsky;I. Mocchetti https://doi.org/10.1074/jbc.273.45.29394
  17. Neuron v.22 Specification of neurotransmitter identity by Phox2 proteins in neural crest stem cells Lo, L.;X. Morin;J. F. Brunet;D. J. Anderson https://doi.org/10.1016/S0896-6273(00)80729-1
  18. Neuron v.21 Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons Meyer-Franke, A.;G. A. Wilkinson;A. Kruttgen;M. Hu;E. Munro;M. G. Hanson;L. F. Reichardt;B. A. Barres https://doi.org/10.1016/S0896-6273(00)80586-3
  19. Pharmacol. Ther. v.87 Cyclic nucleotide analogs as biochemical tools and prospective drugs Schwede, F.;E. Maronde;H. Genieser;B. Jastorff https://doi.org/10.1016/S0163-7258(00)00051-6