DOI QR코드

DOI QR Code

Effects Of Oxygen Enrichment on the Structure of CH4/CHCI3/O2N2 Premixed Flames

CH4/CHCI3/O2N2 예혼합 화염 구조에서 산소부화의 효과

  • 이기용 (안동대학교 기계공학부)
  • Published : 2003.07.01

Abstract

Numerical simulations of freely propagating flames burning stoichiometric C $H_4$/CHC1$_3$/ $O_2$/$N_2$ mixtures are performed at atmospheric pressure in order to understand the effect of the $O_2$ enrichment level and the CHC1$_3$/C $H_4$ molar ratio. A chemical kinetic mechanism is developed, which involves 69 gas-phase species and 379 forward and 364 backward reactions. The calculated flame speeds are compared with the experiments for the flames established at several CHC1$_3$/C $H_4$ molar ratio (R<1), the results of which is in excellent agreement. As a results of the increased $O_2$ enrichment level from 0.21 to 1, the flame speed and the temperature in the burned gas are increased. At high CHC1$_3$/C $H_4$ molar ratio two peak values appear on the $O_2$ consumption rate, which are affected by CC1$_2$$O_2$$_{-}$>C1O+CC1O and H+ $O_2$$_{-}$>O+OH.+OH.

Keywords

References

  1. Wilson, W.E., O'Donovan, J.T., and Fristron, R.M., 1969, 'Flame Inhibition by Halogen Compounds,' Twelfth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p. 929
  2. Westbrook, C. K. 1982, 'Inhibition of Hydrocarbon Oxidation in Laminar Flames and Detonations by Halogenated Compounds,' Nineteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p. 127
  3. Karra, S.B. and Senkan, S.M. 1987, 'Chemical Structures of Sooting Fuel-Rich $CH_3Cl/CH_4/O_2/Ar$ and $CH_4/O_2/Ar$ Flames,' Combust. Sci. Tech, Vol. 54, p. 333 https://doi.org/10.1080/00102208708947059
  4. Karra, S.B., Gutman, D., and Senkan, S.M., 1988, 'Chemical Kinetic Modeling off Fuel-Rich $CH_3Cl/CH_4/O_2/Ar $ Flames,' Combust. Sci. Technol., Vol. 60, p. 45 https://doi.org/10.1080/00102208808923975
  5. Fisher, E.M. and Koshland, C.P., 1990 'Numerical Simulation of the Thermal Destruction of Some Chlorinated $C_1$and $C_2$ Hydrocarbons,' J. Air Waste Manage. Assoc., Vol. 40, p. 1384 https://doi.org/10.1080/10473289.1990.10466790
  6. Valeiras, H., Gupta, A.K., and Senkan, S.M., 1987, 'Laminar Burning Velocities of Chlorinated Hydrocarbon-Methane-Air Flames,' Combust. Sci. technol., vol. 36, p. 123 https://doi.org/10.1080/00102208408923729
  7. Gupta, A.K. and Valeiras, H.A., 1984, 'Burning Velocities of Chlorinated Hydrocarbon-Methane-Air Mixtures,' Combust. Flame, Vol. 55, p. 245 https://doi.org/10.1016/0010-2180(84)90166-4
  8. Lee, W.J., Clcek, B., and Senkan, S.M., 1993, 'Chemical Structure of Fuel-Rich and Fuel-Lean Flames of $CHCI_3/CH_4$ Mixtures,' Environ. Sci. Technol. Vol. 27, p. 949 https://doi.org/10.1021/es00042a019
  9. Devynck, P., Pauwels, J.F., and Sochet, L.R., 1997, 'Chemical Structure of a Stoichiometric Low-Pressure $CH_{4}/CHCI_{3}/O_{2}/N_{2}$ Flame,' Bull. Soc. Chim. Gelg., Vol. 106, p. 361
  10. Lou, J.C. and Chang, Y.S., 1997, 'Thermal Oxidation of Chloroform,' Combust. Flame, Vol. 109, p. 188 https://doi.org/10.1016/S0010-2180(96)00148-4
  11. Leylegian, J.C., Zhu, D.L., Law, C.K., and Wang, H., 1998, 'Experiments and Numerical Simulation on the Laminar Flame Speeds of Dichloromethane and Trichloromethane,' Combust. Flame, Vol. 114, p. 285 https://doi.org/10.1016/S0010-2180(97)00326-X
  12. Senkan, S.M., 1987, U.S.A. Patent 4, 714, 796
  13. Rogg, B., 1994, RUN-1DL: A Computer Program for the Simulation of One-Dimensional Chemically Reacting Flows. University of Cambridge
  14. Miller, G.P., 1995, 'The Structure of a Stoichiometric $CCL_4-CH_4$-Air Flame Flame,' Combust. Flame, Vol. 101, p. 101 https://doi.org/10.1016/0010-2180(94)00194-W
  15. Wu, Y.P. and Won,Y.S., 2000, 'Pyrolysis of Chloromethanes,' Combust. Flame, Vol. 122, pp. 312 https://doi.org/10.1016/S0010-2180(00)00116-4
  16. Chang, W.D. and Senkan, S.M., 1989, 'Detailed Chemical Kinetic Modeling of Fuel-Rich $C_2HCl_3/O_2$/Ar Flames,' Environmental Science and Technology, Vol. 23, p. 442 https://doi.org/10.1021/es00181a009
  17. Lee, K.Y., Yang, M.H., and Puri, I.K. 1993, 'Numerical Simulation of Stoichiometric Premixed Flames Burning $CH_3Cl/CH_4$/Air Mixtures at Atmospheric Pressure and Comparison of the Flame Speeds with Experimental Results,' Combust. Flame, Vol. 92, p. 419 https://doi.org/10.1016/0010-2180(93)90153-T
  18. Wu, C.K. and Law,C.K., 1984, 'On the Determination of Laminar Flame Speeds from Stretched Flames,' Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p. 1941
  19. Lutz, A.E., Rupley, R.M., and Kee, R.J., 1996, EQUIL: A CHEMKIN Implementation of STANJAN, for Computing Chemical Equilibria, Sandia National Laboratories
  20. Fristrom, R.M. and Westernberg, A.A., 1963, 'Experimental Chemical Kinetics from Methane-Oxygen Laminar Flame sSructure,' Eighth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p. 438