DOI QR코드

DOI QR Code

Induction of Growth Inhibition by BCH in KB Human Oral Epidermoid Carcinoma Cells

구강 편평세포암종 KB세포에서 아미노산 수송억제제 BCH에 의한 세포성장 억제

  • Yoon, Jung-Hoon (Oral Biology Research Institute, College of Dentistry, Chosun University) ;
  • Kim, Youn-Bae (Oral Biology Research Institute, College of Dentistry, Chosun University) ;
  • Kim, Do-Kyung (Oral Biology Research Institute, College of Dentistry, Chosun University)
  • 윤정훈 (조선대학교 치과대학 구강생물학연구소) ;
  • 김윤배 (조선대학교 치과대학 구강생물학연구소) ;
  • 김도경 (조선대학교 치과대학 구강생물학연구소)
  • Published : 2003.07.01

Abstract

Amino acid transporters play an important role in supplying nutrients to normal and cancer cells for cell proliferation. System L is a major transport system responsible for the N $a^{+}$-independent, large neutral amino acids including several essential amino acids. L-type amino acid transporter 1 (LAT1), an isoform of system L amino acid transporter, is highly expressed presumably to support their continuous growth and proliferation in malignant tumors. 2-Aminobicyclo- (2,2,1) -heptane-2-carboxylic acid (BCH) is a model compound for study of amino acid transporter as a system L selective inhibitor. In the present study, we examined whether BCH induced growth inhibition in KB human oral squamous carcinoma cell line or not. The uptake of L-[$^{14}$ C]leucine by KB cells is inhibited by BCH in a concentration dependent manner with a Ι $C_{50}$ value of 75.3$\pm$6.2 ${\mu}{\textrm}{m}$ and a $K_{i}$ value of 98.7$\pm$ 4.1 ${\mu}{\textrm}{m}$. The growth of KB cells is inhibited by BCH in time dependent manner and concentration dependent manner with a Ι $C_{50}$ value of 11.1 $\pm$0.8 mM. In the DNA of KB cells treated with the various concentrations and various periods of BCH, the characteristic ladders associated with DNA fragmentation were not observed. These results suggest that BCH inhibits the growth of KB oral epidermoid carcinoma cells through the inhibition of transport of neutral amino acids into cells without DNA break down. This phenomenon will be a new rationale for anti-cancer therapy.y.

구강 편평 세포암종 KB 세포를 이용하여 아미노산 수송계 L억제제인 BCH의 세포 성장억제에 미치는 효과를 밝히기 위해, KB세포에서 uptake실험, MTT분석 및 DNA frag-mentation분석 등을 시행하여 다음과 같은 결과를 얻었다. KB 세포에서는 아미노산 수송계 L 중에서 LAT1과 그 보조인자 4F2hc를 통해 BCH및 중성 아미노산들이 수송되었다. BCH는 시간과 농도에 의존적으로 KB세포의 성장을 억제시켰다. BCH를 처리한 실험군에서 DNA fragmentation 현상은 볼 수 없었다. 본 연구의 결과로서 구강암 세포주인 구강 편평세포암종 KB 세포에서 LAT1과 그 보조인자 4F2hc를 통해 BCH및 중성 아미노산의 수송이 이루어지고 있다는 것을 확인할 수 있었으며 BCH는 이 LAT1을 차단하여 중성 아미노산들의 세포 내 고갈을 유도함으로서 KB 세포 성장의 억제를 유도하는 것으로 사료된다.

Keywords

References

  1. Christensen HN. 1990. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 70: 43-77
  2. Silbernagl S. 1979. Renal transport of amino acids. Klin Wochenschr 57: 1009-1019 https://doi.org/10.1007/BF01479986
  3. Kanai Y, Endou H. 2001. Heterodimeric amino acid transporters: molecular biology and pathological and pharmacological relevance. Curr Drug Metab 2: 339-354 https://doi.org/10.2174/1389200013338324
  4. Gomes P, Soares-da-Silva P. 1999. L-DOPA transport properties in an immortalised cell line of rat capillary cerebral endothelial cells, RBE 4. Brain Res 829: 143-150 https://doi.org/10.1016/S0006-8993(99)01387-6
  5. Goldenberg GJ, Lam HY, Begleiter A. 1979. Active carriermediated transport of melphalan by two separate amino acid transport systems in LPC-1 plasmacytoma cells in vitro. J Biol Chem 254: 1057-1064
  6. Blondeau JP, Beslin A, Chantoux F, Francon J. 1993. Triiodothyronine is a high-affinity inhibitor of amino acid transport system L1 in cultured astrocytes. J Neurochem 60: 1407-1413 https://doi.org/10.1111/j.1471-4159.1993.tb03302.x
  7. Lakshmanan M, Goncalves E, Lessly G, Foti D, Robbins J. 1990. The transport of thyroxine into mouse neuroblastoma cells, NB41A3: the effect of L-system amino acids. Endocrinology 126: 3245-3250 https://doi.org/10.1210/endo-126-6-3245
  8. Su TZ, Lunney E, Campbell G, Oxender DL. 1995. Transport of gabapentin, a gamma-amino acid drug, by system I alpha-amino acid transporters: a comparative study in astrocytes, synaptosomes, and CHO cells. J Neurochem 64: 2125-2131 https://doi.org/10.1046/j.1471-4159.1995.64052125.x
  9. Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H. 1998. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 273: 23629-23632 https://doi.org/10.1074/jbc.273.37.23629
  10. Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, Cha SH, Matsuo H, Fukushima J, Fukasawa Y, Tani Y, Taketani Y, Uchino H, Kim JY, Inatomi J, Okayasu I, Miyamoto K, Takeda E, Goya T, Endou H. 2001. Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta 1514: 291-302 https://doi.org/10.1016/S0005-2736(01)00384-4
  11. Uchino H, Kanai Y, Kim do K, Wempe MF, Chairoungdua A, Morimoto E, Anders MW, Endou H. 2002. Transport of amino acid-related compounds mediated by L-type amino acid transporter 1 (LAT1): insights into the mechanisms of substrate recognition. Mol Pharmacol 61: 729-737 https://doi.org/10.1124/mol.61.4.729
  12. Mastroberardino L, Spindler B, Pfeiffer R, Skelly PJ, Loffing J, Shoemaker CB, Verrey F. 1998. Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395: 288-291 https://doi.org/10.1038/26246
  13. Pfeiffer R, Spindler B, Loffing J, Skelly PJ, Shoemaker CB, Verrey F. 1998. Functional heterodimeric amino acid transporters lacking cysteine residues involved in disulfide bond. FEBS Lett 439: 157-162 https://doi.org/10.1016/S0014-5793(98)01359-3
  14. Mannion BA, Kolesnikova TV, Lin SH, Wang S, Thompson NL, Hemler ME. 1998. The light chain of CD98 is identified as E16/TA1 protein. J Biol Chem 273: 33127-33129 https://doi.org/10.1074/jbc.273.50.33127
  15. Nakamura E, Sato M, Yang H, Miyagawa F, Harasaki M, Tomita K, Matsuoka S, Noma A, Iwai K, Minato N. 1999. 4F2 (CD98) heavy chain is associated covalently with an amino acid transporter and controls intracellular trafficking and membrane topology of 4F2 heterodimer. J Biol Chem 274: 3009-3016 https://doi.org/10.1074/jbc.274.5.3009
  16. Sang J, Lim YP, Panzica M, Finch P, Thompson NL. 1995. TA1, a highly conserved oncofetal complementary DNA from rat hepatoma, encodes an integral membrane protein associated with liver development, carcinogenesis, and cell activation. Cancer Res 55: 1152-1159
  17. Wolf DA, Wang S, Panzica MA, Bassily NH, Thompson NL. 1996. Expression of a highly conserved oncofetal gene, TA1/E16, in human colon carcinoma and other primary cancers: homology to Schistosoma mansoni amino acid permease and Caenorhabditis elegans gene products. Cancer Res 56: 5012-5022
  18. Verrey F, Meier C, Rossier G, Kuhn LC. 2000. Glycoprotein-associated amino acid exchangers: broadening the range of transport specificity. Pflugers Arch 440: 503-512 https://doi.org/10.1007/s004240000274
  19. Pineda M, Fernandez E, Torrents D, Estevez R, Lopez C, Camps M, Lloberas J, Zorzano A, Palacin M. 1999. Iden-tification of a membrane protein, LAT-2, that co-expressed with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small large zwitterionic amino acids. J Biol Chem 274: 19738-19744 https://doi.org/10.1074/jbc.274.28.19738
  20. Segawa H, Fukasawa Y, Miyamoto K, Takeda E, Endou H, Kanai Y. 1999. Identification and functional characterization of a Na'-independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem 274: 19745-19751 https://doi.org/10.1074/jbc.274.28.19745
  21. Rossier G, Meier C, Bauch C, Summa V, Sordat B, Verrey F, Kuhn LC. 1999. LAT2, a new basolateral 4F2hc/CD98- associated amino acid transporter of kidney and intestine. J Biol Chem 274: 34948-34954 https://doi.org/10.1074/jbc.274.49.34948
  22. Kim DK, Kanai Y, Choi HW,. Tangtrongsup S, Chairoungdua A, Babu E, Tachampa K, Anzai N, Iribe Y, Endou H. 2002. Characterization of the system L amino acid transporter in T24 human bladder carcinoma cells. Biochim Biophys Acta 1565: 112-121 https://doi.org/10.1016/S0005-2736(02)00516-3
  23. Kim DK, Kanai Y, Chairoungdua A, Matsuo H, Cha SH, Endou H. 2001. Expression cloning of a $Na^+$-independentaromatic amino acid transporter with structural similarityto $H^+$/monocarboxylate transporters. J Biol Chem 276:17221-17228 https://doi.org/10.1074/jbc.M009462200
  24. Sloan JL, Mager S. 1999. Cloning and functional expressionof a human $Na^+$ and Cl -dependent neutral and cationicamino acid transporter $B^{0+}$. J Biol Chem 274: 23740-23745 https://doi.org/10.1074/jbc.274.34.23740
  25. Keum YS, Kim J, Lee KH, Park KK, Surh YJ, Lee JM,Lee SS, Yoon JH, Joo SY, Cha IH, Yook JI. 2002, Inductionof apoptosis and caspase-3 activation by chemopreventive[6]-paradol and structurally related compounds in KB cells. Cancer Lett 177: 41-47 https://doi.org/10.1016/S0304-3835(01)00781-9
  26. Miller MC 3rd, Johnson KR, Willingham MC, Fan W. 1999.Apoptotic cell death induced by baccatin Ⅲ, a precursor ofpaclitaxel, may occur without G(2)/M arrest. Cancer Chemother Pharmacol 44: 444-452 https://doi.org/10.1007/s002800051117
  27. Kok SH, Hong CY, Kuo MY, Lee CH, Lee JJ, Lou IU, LeeMS, Hsiao M, Lin SK. 2003. Comparisons of norcantharidincytotoxic effects on oral cancer cells and normal buccalkeratinocytes. Oral Oncol 39: 19-26 https://doi.org/10.1016/S1368-8375(01)00129-4