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Abstract

The near-tip field of mode-I dynamic cracks steadily propagating in a strain softening
material is investigated under plane strain conditions. The material is assumed to be
incompressible and its deformation obeys the 7> flow theory of plasticity. A power-law
stress-strain relation with strain softening is adopted to account for the damage
behavior of materials near the dynamic crack tip. By assuming that the stresses and
strains have the same singularity at the crack tip, this paper obtains a fully continuous
dynamic crack-tip field in the damage region. Results show that the stress and strain
components possess the same logarithmic singularity of (n(R/7)° and the angular
variations of field quantities are identical to those corresponding to the dynamic cracks
in the elastic-perfectly plastic material.

1. Introduction attention of this paper is primarily
focused on the mode-1 crack steadily
The stress and strain distribution near  Propagating in a strain softening material

a crack tip is an important and under plain strain conditions.
complicated problem in fracture To understand the mechanics behavior
mechanics. It depends not only on the of near-tip fields for dynamic cracks in
modes of a crack, but also on the motion elastic-plastic materials, Nemat-Nasser
states of the crack. A detailed review on  and his coworker”™™® have systematically
dynamic fracture is recently given by investigated all three modes of dynamic
Rosakis and  Ravichandran'”. The cracks and the related issues in the
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elastic-perfectly plastic and power-law
obtained

Thereafter, many
further studied the

elastic-plastic dynamic

hardening  materials, and

meaningful results.
other

mode-I

researchers
cracks
using both theoretical and numerical
methods'"™ ",

dynamic

Two differently featured
thus
proposed. One has discontinuous stresses

crack-tip fields are
and strains, but the other has continuous

Using the
]

stresses and strains.

thermodynamics theory, Drugan[14
rigorously proved the correct-ness of the
continuous dynamic crack-tip fields, and
ruled out the possibility of discontinuous

existed at the
1[15]

stresses and strains

dynamic crack tip. Xu and Saiga
obtained the continuous crack-tip stress
fields for both

non-hardening  materials

hardening and
using the
element free Galerkin method., and thus

support the conclusions of

Drugan“‘”.

directly

It is well known that the assumptions
of perfect plasticity or strain hardening of
materials are only valid for a certain
When  the
largely

stage of  deformation.

deformation develops enough,
some softening and damage phenomena
always appear in engineering materials.
In order to consider such phenomena, it
is essential to adopt a strain softening
model to study the dynamic crack-tip
fields. In fact, Gao"® studied the mode-T
dynamic crack using a strain damage
model, but

solution containing strong discontinuities,

obtained an asymptotic
which must be ruled out as discussed
above. Therefore, a need remains to seek
a continuous damage near-tip field for

(495)

dynamic cracks.

By using a power-law strain softening
model and the assumption of the same
singularity of stresses and strains, the
fully
of dynamic

present paper constructs a

continuous near-tip field
mode-I cracks in an incompressible strain
plane strain

softening material under

conditions.

2. Basic Equations

Consider a semi-finite straight mode-I
crack propagating steadily at speed V in
an elastic-plastic strain softening
material under plane strain conditions.
The material 1is assumed to be
incompressible, and to deform plastically
according to the J» flow theory. Both
rectangular Cartesian-coordinates (x1, x2)
in the
propagation and polar coordinates (r, &)
with
of the crack tip are introduced with their

with x1 aligned direction of

= 0 corresponding to the line ahead

common origin at the tip of the crack and

moving with the tip. Let %« Vo represent

the rectangular components of stress
tensor and particle velocity, respectively.
In the absence of body force. the motion
equations for the crack propagation

problem are

Cups= PV, o))
where p is the mass density, a comma
with
coordinate

implies the spatial derivatives

respect to the rectangular
components, the dot superimposed on
field quantities denotes the material time
derivative. The summation convention to

be followed throughout the paper for
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adopted. Greek
indices a, B have the range of 1~2. Let

repeated indices is

€4 stand for the rectangular components

of strain tensor. In terms of the particle

velocity, Ve, the components of (small)

strain rate tensor are
. 1
Saﬂ =5(Va.ﬂ +Vﬂ.a) (2)

It is noted that using the steady-state
condition, d()/d =-¥3()/dx  the dimensions
of left term and right term of equations
(1) and (2) are consistent each other.
The material incompressibility condition
that the
divergence free, which can be expressed

implies particle velocity is

under the plane strain conditions by

VitV =0 (3)

From the J; flow theory of plasticity,
the two dimensional constitutive equations
elastic-plastic

for an incompressible

material can be written as
£, =—€y =L(°.-1| _dzz)J" ix'(0-11 _o-zz)
4u 2
. 1
€ :'270'12+’1012 (4)

where 11 is the shear modulus, A is the

plastic flow factor which can be
determined by the magnitude of stress
components in the plastic regions.

model the

behavior of materials in plastic damage

In order to softening

regions, we assume that the uniaxial
tensile elastic—plastic stress-strain relation
follows the power-law curve

Ee ,

C = —(l+n)
4E'g M_] s gZeO
1+nn ] (5

£<¢g,

(496)

where E is Young's modulus, n is the

material softening exponent, M>! is a
material constant, €0 is the initial yield
strain. and S¢=£%& ig the initial yield

stress. In particular. M& is the strain
value corresponding to the peak of stress
6. Fig. 1
softening stress-strain curves for n = 3,
5. 10 and M=15 based on (5). It is
observed that stresses decrease gradually

illustrates the power-law

with increasing strains in the post-peak
region of the strain softening curves.
Therefore, the power-law strain softening
curves can account for the effects of
material damage on the crack-tip field.
In term of the uniaxial stress S and
total strain, €, the uniaxial plastic strain
is represented by € =€~%/E  From this
equation and (5). a plastic potential
function, F, is defined as
tem
F(O',sl,)zo*—(o-+E£p)(1+nq)““”[£—"+i+nn:l
& 0y (6)
For the (En=0)

equation (6) is also valid if the uniaxial

plane strain case

tensile stress, 0, and the uniaxial plastic

strain, €, are replaced by the effective
stress, O, and the effective or
accumulative plastic strain, &,
respectively,
1
_ 1, 2, o |2
e"‘/§|:4(°-n 0-22) '+'0'12|_I (1)
1
~ 2w, LY V]2
e”_—\/—?.l:(,[z(e” 822) +(£|2)|J at (8)

. . . 34
where t is a time variable, and &« are the

components of plastic strain rate tensor.
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By use of the normality rule and the
1&=0, in the
theory of plasticity, the plastic flow factor

consistency condition,

A can be determined by

s (or )
20, | 0, (9)
1.2 :
feo-n=3
Y —n=5 [
 —2-n=10

olog

0.0 ¢

£ty

Fig. 1 Uniaxial power law softening stress
relation for the strain softening expo
n=3, 5, 10 and the constant ¢=1.5

In this work, the attention is focused
on the crack-tip field in the stage of

strain softening where the plastic strain

€

» 1is large enough. In this case, the

plastic potential function in (6) can be
simplified as

F(o,,)=0,-Clg,)" (10)

C = E[(t+m)ke, "

one obtains the

where the constant

From (9) and 10,
plastic flow factor in the damage region

at the crack tip as follows

3 ()
r=-—| S g,
2nC*| o, an

(497)

3. Asymptotic Equations and Continuous
Solutions

3.1 Kinematical Quantities

It is assumed that the stress
compon-ents near a dynamic crack tip
logarithmic

possess the following

singularity

(i RV S g RY"
0, (r,0) —(ln7) Yol (6)(ln - ) (12)

m=0

where is an undetermined exponent of
stress singularity, R is a constant with
the physical dimension of length, which
may be used as a measure of the plastic
zone size.

If we only consider the dominant term
of the singular stress expansion (12),

from the steady-state condition

d(Vdt=—va()ax  and  the

equations (1), then the particle velocity

motion

near the crack tip must be taken the

asymptotic expansions as

5 5
v, (r,0) :(lnE] [Aa ln£+Ba(0):|+o|:(ln£) :|
r F r (13)

where 420 js an unknown constant,

4,=0 for mode-I cracks, B«®) are the
angular functions of particle velocity, ol )
is  the
Following the

infinitesimal order symbol.

similar analyses  of
Leighton et al.'"” for the elastic-perfectly
plastic material, our study shows that

when 4 #0 in (13). one can only
construct the asymptotic crack-tip fields
with discontinuous stresses and strains
Gao''™.  As

Section 1,

as those reported by

introduced . in such
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discontinuous solutions must be ruled
out. To seek the continuous asymptotic
fields, we will study the asymptotic

solutions with 4 =0 here. Then equation
(13) becomes

5 5
v, (7,0) :(ln—li) Ba(9)+o[(ln£J ]
r r (14)

Substitution of (14) into (3) obtains the
incompressibility  condition  which is
expressed by the angular functions of
particle velocity

B, (6)=Bl,(9)tan6 (15)

where the prime '’ stands for d/96.
From (2), (14) and (15). it follows that

9 , 5
& =-4, :_l(lnﬁ) cos@B, (8) +o[l(ln£] ]
r r r r

1 RY ’ 1 RY

The above equations show that the
strain components e are of the order of
the logarithmic singularity like (ln(R/”))a.

3.2 Dynamic Quantities

From (12), the asymptotic form of the

effective stress % is given by

J 5-1
oe(r,9)=(1n§) a§°>(9)+(1n5) a(e)
2 r

R
+o|:(1n7) :| an

Under the steady-state condition, from
(12) and (17), we have the stress rate

components and the effective stress rate,

(498)

respectively

_ (0B sinos® @) o R
&,5(r,0)= . (m . ) sinBo (9)+o!:r(ln . ) (18)

, ~t
sinfa " (9)+[1n5) X
¥

5

& (r,8)= K(lnﬁ)
. ,

4 (sin@cfi” (0)+500500'§°)(9))

+0Hm§) l] (19)

Inserting equations (17) and (19) into
(11), we obtain

1
i -0+1s =l -2
A:-ivcn[mﬁj : [01"’(e)+[1n5] o'j”(B)]
2nr r r

x[sineof_“"(oh(lng]_I(sinea;”'(e)wcoseoLO'(e)]}+L (20)

where the dots denote the neglected
higher terms. On the other hand,
equations (12), (16)., (18) and (4) yield

: -1
A~r~ . Then one can have

n

¥ @)=0 or @ =v3K T TaT @D

in which the second equation is the
constraint condition of plastic
deformation in the power-law softening
material. K is a free constant that cannot
be determined from the asymptotic
solution.

Substitution of (12), (17 and the
second equation of (21) into (7) yields the
relation of the stress angular functions in
(12) as follows

Lo ©)-62©)f + 60O =K

4 (22)

This equation is similar to the von
Mises vyield condition of incompressible



A Study on Dynamic Crack-Tip Fields in a Strain Softening Material 33

elastic-perfectly plastic materials.

Therefore, we may introduce a stress

function 1//(5) in such a manner that

c2©)=06"©)- Kcos(y(®)-29)
c0@)=0"®)+ Kcoslw(©®)-20)
o @)= Ksin(y(@)-29) (23)

where o4 (0)= (‘71(?)(9) +‘7§g)(9))/2 is the

mean or hydrostatic stress.

3.3 Governing Equations

Substituting (12), (14) and (23) into
the motion equations (1), and
substituting (12), (16), (18) and (23) into
the constitutive equations (4), after some

manipulations, we obtain the final
governing equations of the angular
functions of the dominant asymptotic

fields in the plastic regions as follows

w'®)- 2)(cos2 v-M? sin29)= 0

X-= %(w'(e)— 2)siné tany

o} 0)=K('©)-2)siny (24)
E’[’ ©)=M"*(y'(@)-2)cosy cotb

B, ©)=M(y’'(6)-2)cosy

M=V(p/w'"* is the Mach
the dimensionless parameter

2©@)=prA(r,8)/V and B.©@)=uB,©0)/ KV

where

number,

For the mode-I crack, the boundary
conditions which is associated with the
ordinary differential equations (24) are

w(0)=0, y(z)=7, B,(0)=0, o\"(x)=K (95)

(499)

3.4 Fully Continuous Salutions

It is observed that the above governing
equations (24) and the boundary
conditions (25) of the

asymptotic fields near a dynamic mode-I

dominant

crack tip in power-law strain softening
incompressible materials are exactly the
same as those of cor-responding crack-tip
fields in the
incompressible material”. Moreover, the

elastic-perfectly plastic

further study has shown that the possible
elastic unloading condition for the two
kinds of materials is also same. The only
difference for the two cases is that K in
the stress fields (23) is a free constant
relating to the strain softening exponent
n in the present work, but it is the shear
stress for the perfectly-plastic
Therefore, the angular
variations of the field quantities in this

yield
materials.
paper are 1identical with those for
elastic-perfectly plastic materials which
con-sidered in detail by

Leighton et al”. As a con-sequence, the

have been

dynamic crack-tip field for the strain

softening material also consists of a

uniform sector in 0580<6  a non-uniform

centered fan sector in 91*55’392*, and

another uniform sector in & <f<7,

Moreover, the stress function V’(g) and

© .
the angular mean stress O (‘9) in the

angular stress components (19) are given
by
26, if 0<8<q
w(0)=1cos ' (-Msing), if 6/ <0<6;
20 -, if <0<z (26)

and



34 Seok-Ki Jang

p 1+Msiné —2E(0 ;M)
- Msin6, —2E@;;M) |
if 0<0<8

1+ Msin0-2E(G;M
o(g)= x| OGO |

- Msin, —2E(6,;M)
if /<6<8@,

K, if €<0<n (27)

where E(&:M) is the elliptic integral of

the second kind, 6 ana & are the sector
transition angles defined by

g,_sin_,(Mﬂ/erMz]
¢ = sin| MAV8EM

4

1[—M+\/8+M2J

6, = —sin”
4

(28)

From (26), (27) and (23), the angular
distributions of the stress function and
the stress components are shown in Fig.
2 and Fig. 3. respectively.

- 4—-cos¢=+Msino
150 |- - weccOSP-MSING | A
1 ) .

S

8

3

Stress function y(6)
-3

w
<
1
h
¢

i
0 30 6 S0 120 150 180

Fig. 2 Angular variation of stress function for
M=0.2 and 0.5

- Xiankui Zhu

0 30 60 9% 120 150 180

Fig. 3 Angular distributions of stress components
for M=0.2 and 0.5

These results are the plastic solution

around the entire dynamic crack tip
without elastic unloading. The parameter
K in Fig. 3 is a constant relating to the
strain softening exponent n that cannot
the

it can be determined by

be determined from asymptotic
solution, but
matching the asymptotic solution with
the far-field solution such as the finite
element numerical solution. Fig. 3 shows
ahead of the

with the

that the tensile stress
moving crack tip decreases

increasing crack speed M.

4. Conclusions

An elastic-plastic asymptotic analysis
has been carried out for the steady-state
dynamic mode-I crack propagation in an
incompressible power-law strain softening
material under plane strain conditions.
The deformation of the material obeys the

J> flow theory of plasticity.
(1) For
material,

the power-law strain softening

when the stresses and

(500)
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strains have the same logarithmic

singularity as

1 1
R el R nel
o, ~|In— and £ , ~| In—
aﬁ [ r ) aﬂ ( r j M

one can construct the fully continuous
asymptotic crack-tip fields.
The the

asymptotic fields for mode-1 crack in

structures of dominant

power-law softening materials are
exactly the same as those in
elastic-perfectly plastic materials,

that is to say, the angular variations
of field quantities are identical, the
elastic unloading does not appear
behind the crack-tip, the crack tip is
enclosed entirely by plastic sectors.

The present asymptotic stress field
includes a free constant K relating to
the strain softening exponent n which
the

it can be

cannot be determined from
asymptotic solution, but
determined by matching the asymptotic
solution with the far-field solution.

The solution reported in the paper
represents a possible mathematical
of the
fields for a dynamically propagating
crack. Whether they can be achieved
in reality or not must be examined
full-field

properly posed boundary-initial value

structure damage near-tip

against solutions for
problems obtain-ed with, for example,
Such

full-field numerical solutions for the

the finite element methods.

problem considered are not available
vet.
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