DOI QR코드

DOI QR Code

Si(100) Surface Structure Studied by Time-Of-Flight Impact-Collision ton Scattering Spectroscopy

비행시간형 직충돌 이온산란 분광법을 이용한 Si(100) 면의 구조해석

  • Hwang, Yeon (Department of Materials Science and Engineering, Seoul National University of Technology) ;
  • Lee, Tae-Kun (Department of Materials Science and Engineering, Seoul National University of Technology)
  • 황연 (서울산업대학교 신소재공학과) ;
  • 이태근 (서울산업대학교 신소재공학과)
  • Published : 2003.08.01

Abstract

Time-Of-flight Impact-Collision Ion Scattering Spectroscopy (TOF-ICISS) using 2 keV He$\^$+/ ion was applied to study the geometrical structure of the Si(100) surface. The scattered ion intensity was measured along the [011] azimuth varying the incident angle. The focusing effects were appeared at the incident angles of 20$^{\circ}$, 28$^{\circ}$, 46$^{\circ}$, 63$^{\circ}$, and 80$^{\circ}$. The Si atomic position was simulated by calculating the shadow cone to explain the five focusing effects. The four focusing effects at 28$^{\circ}$, 46$^{\circ}$, 63$^{\circ}$, and 80$^{\circ}$ resulted from the {011} surface where no dimers existed on the outermost surface. On the contrary, the scattering between two Si atoms in a dimer resulted in the focusing peak at 20$^{\circ}$.

2 keV의 저에너지 He$^{+}$ 이온을 사용한 비행시간형 직충돌 이온산란 분광법을 이용하여 Si(100) 표면의 원자구조를 해석하였다. [011] 방위를 따라 이온빔을 입사시키고, 입사 각도에 따른 산란된 이온의 강도를 측정하였다. 20$^{\circ}$, 28$^{\circ}$, 46$^{\circ}$, 63$^{\circ}$, 80$^{\circ}$등의 5가지 입사각도에서 집속 효과가 일어났다. 이 각도를 설명하기 위해 그림자 원뿔을 계산하여 원자의 위치를 모사하였으며, 이 결과는 실험과 잘 일치하였다. 28$^{\circ}$, 46$^{\circ}$, 63$^{\circ}$ 및 80$^{\circ}$에서 일어나는 4개의 집속 효과는 표면 최외층에서 이 합체가 자리하지 않는 {011}면을 따라서 발생한 것이며 벌크 구조가 반영된 결과이다. 그 반면에 이합체를 이루는 원자사이에서 발생한 산란은 20$^{\circ}$에서 집속 효과를 나타내었다.

Keywords

References

  1. Surf. Sci. v.102 Evicence of Multilayer Distortions in the Reconstructed Si(100) Surface I.Stensgaard;L.C.Feldman;P.J.Silverman https://doi.org/10.1016/0039-6028(81)90302-2
  2. Surf. Sci. v.111 RHEED Studies of Si(100) Surface Structures Induced by Ga Evaporation T.Sakamoto;H.Kawanami https://doi.org/10.1016/0039-6028(80)90703-7
  3. Jpn. J. Appl. Phys. v.39 Atomic Resolution Imaging on Si(100)2×1 and Si(100)2×1 : H Surfaces with Noncontact Atomic Force Microscopy K.Yokoyama;T.Ochi;A.Yoshimoto;Y.Sugawara;S.Morita https://doi.org/10.1143/JJAP.39.L113
  4. Phys. Rev. Lett. v.46 Ion Beam Crystallography at the Si(100) Surface R.M.Tromp;R.G.Smeenk;F.W.Saris https://doi.org/10.1103/PhysRevLett.46.939
  5. Nucl. Instr. Methods v.168 Si(001) Surface Studies Using High Energy Ion Scattering L.C.Feldman;P.J.Silverman;I.Stensgaard https://doi.org/10.1016/0029-554X(80)91315-4
  6. Jpn. J. Appl. Phys. v.20 Quantitative Surface Atomic Geometry and Two-dimensional Surface Electron Distribution Analysis by a New Technique in Low Energy Ion Scattering M.Aono;C.Oshima;S.Zaima;S.Otani;Y.Ishizawa https://doi.org/10.1143/JJAP.20.L829
  7. Surf. Sci. v.128 Thermal Vibration Amplitude of Surface Atoms Measured by Specialized Low-energy Ion Scattering Spectroscopy:TiC(111) R.Souda;M.Aono;C.Oshima;S.Otani;Y.Ishizawa
  8. Phys. Rev. v.B51 Low-energy $H^{+} He^{+} N^{+} O^{+} $, and $Ne^{+}$ Scattering from Metal and Ionic-compound Surfaces : Neutralization and Electronic Excitation R.Souda;K.Yamamoto;W.Hayami;T.Aizawa;Y.Ishizawa
  9. Surf. Sci. v.140 Determination of Surface Reconstruction with Impact-Collision Alkali Ion Scattering H.Niehus;G.Comsa https://doi.org/10.1016/0039-6028(84)90378-9
  10. Surf. Sci. v.166 Enhancement of the ICISS Method by Simultaneous Detection of Ions and Neutrals H.Niehus https://doi.org/10.1016/0039-6028(86)90518-2
  11. J. Kor. Vac. Soc. v.6 Structure of Epitaxial MgO Layers on TiC(001) Studied by Time-Of-Flight Impact-Collision Ion Scattering Spectroscopy Y.Hwang;R.Souda
  12. J. Kor. Ceram. Soc. v.39 no.5 Atomic Structure of TiO Epitaxial Layers Deposited on the MgO(100) Surface Y.Hwang https://doi.org/10.4191/KCERS.2002.39.5.433
  13. Surf. Sci. v.131 Universal Shadow Cone Expressions for an Atom in an Ion Beam O.S.Oen https://doi.org/10.1016/0039-6028(83)90269-8
  14. Phys. Rev. v.B34 Scanning Tunneling Microscopy of Si(001) R.J.Hamers;R.M.Tromp;J.E.Demuth
  15. Phys. Rev. Lett. v.35 Si(100) Surface Reconstruction : Spectroscopic Selection of a Structural Model J.A.Appelbaum;G.A.Baraff;D.R.Hamann https://doi.org/10.1103/PhysRevLett.35.729
  16. Phys. Rev. Lett. v.43 Atomic and Electronic Structures of Reconstructed Si(100) Surfaces D.J.Chadi https://doi.org/10.1103/PhysRevLett.43.43