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Detection of Outliers in Constrained Regression

Myung Geun Kim!)

Abstract

We suggest a method of identifying outliers, using local influence, in regression
when linear constraints are imposed on the regression coefficients. An example is
given for illustration.
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1. Introduction

Tests of linear hypotheses are used for uncovering some relationships among regression
coefficients. When these tests reveal possible linear relationships among regression
coefficients, methods of detecting outliers appropriate for this situation are necessary.
However, few methods of detecting outliers in regression with linear constraints seem to be
avaliable while many outlier detection methods in unconstrained regression have been known
and some of them can be found in Cook and Weisberg (1982), Chatterjee and Hadi (1988),
Barnett and Lewis (1994).

In this work we will suggest a method of detecting outliers, using local influence, in linear
regression when there are some linear relationships among regression coefficients. The local
influence method introduced by Cook (1986) is a general method of assessing the influence
of local departures from assumptions for the underlying model based on the likelihood
displacement. It measures the sensitivity of the analysis to a change in the model caused by a
minor perturbation and has been known as a method of detecting outliers that avoids masking
and swamping effects. A recent review paper by Rancel and Sierra (2001) provides some
literature about the local influence method in regression. We review some results about
regression in Section 2. In Section 3 computations necessary for the local influence measure
are provided. An illustrative example is provided in Section 4.
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2. Preliminaries

We consider the linear regression model
y= X B+ ¢,
where ¥ is an n by 1 vector of response variables, X = ( xy,..., x,,)T 1S an n by p
matrix of fixed independent variables, B=(fy, ..., By 1)T is a p by 1 vector of unknown
regression coefficients and &= (¢, ...,en)T is an n by 1 vector of unobservable errors. We
assume that the e, (r = 1, .., n) are independent and identically distributed as a normal
distribution N(0. ¢*) with mean zero and unknown variance .
First, we consider the case where there is no constraint on A In this case the maximum

likelihood estimator of B is ’B. = (X T X 'x T y and the residual vector is given by

e.=y— X 79.. The maximum likelihood estimator of ¢ is then given by

?* = €y T (2 /n
Next, the linear relationships among S can be expressed as
A B=c (1)

where A is a specified q by p ( ¢<p) matrix of rank q and ¢ is a known g by 1 vector.
Under the linear constraints (1), the maximum likelihood estimator of B is

B= B (X"X)TATA(X"X)TATIT(A B- 0
and the maximum likelihood estimator of Pd is ?= eT el/n, where
e = (e,....,en) = y— X ’B The existence of the linear relationships among A can be

checked by using the usual F-statistic given by F=[(n—p)/q]( ?/ ?*—1) which is

distributed as the F-distribution with q and n-p degrees of freedom when the linear
relationships (1) hold. More details can be found in Chap. 4 of Seber (1977).

3. Local Influence Procedure

In this section we will derive local influence measures for the constrained regression mocel
with linear constraints (1),

Let w=(w,,..., w,,)T be an n by 1 vector of perturbations. We consider the perturbed
model in which the r-th error ¢, is perturbed according to a normal distribution N(O,o‘z [w,)

for r = 1,.,n. This perturbation scheme simultaneously perturbs all the cases. When the &,
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are set equal to one, the perturbed model reduces to the unperturbed model.

Let @ be the p+tl by 1 vector of parameters formed by stacking B and *. We denote
the log-likelihoods for the unperturbed and perturbed models by L(8) and L( 8| w),
respectively. The likelihood displacement LD( w) is defined by 2[L( /b)—L( o ») ], where

@ and 9 Lare the maximum likelihood estimators of @ under the unperturbed and
perturbed models, respectively. The surface of interest is formed by the n+l by 1 vector of
the values w and LD(w) as w varies along a direction d with w= w;+ad, where

wy is the null point at which L( 8)=L( 8l w,), d is a direction vector of unit length and
the scalar @ measures the magnitude of the perturbation. The direction vector — @ pmay

associated with the largest curvature of the curve at a=0 provides information about
outliers that cause a great change in the likelihood displacement. Observations corresponding

to the component of d. that has substantially larger magnitude than the others are

potential outliers.

Let LD=0dLD(w)/dw|,_, and LD=3’LD(w)/dw dw”|,—. For the constrained

regression model, dL(8)/d @ evaluated at 6= B is not in general zero. However, it will

be shown later that the first order derivative LD of the likelihood displacement evaluated at

a=1{ is zero. Thus the curvature is given by
T -
C= | dLDhd]|.
Then dn.x is the eigenvector corresponding to the largest absolute eigenvalue of LD.

In what follows we will derive LD and LD. First we note that

. 30, :
LD = —2( )L (2)
aw a=0
{a 2.7 (0D ] 327,
LD = —2|——% L[ L —zﬁLi(———“L , (3)
0w a=0 awT a=0 = awawT a=0

where L=0L(8)/d 6 evaluated at 6= /\0, L=03°L(6)/68 d 07 evaluated at @= ,\0,

L, is the i-th element of L and 9., is the i-th element of @

v
Let /1\9*.,,, = (X T wX) ' X T Wy, where W is a diagonal matrix whose diagonal

elements are those of w. Under the constraints (1), the maximum likelihood estimator of 8
for the perturbed model is

Bo= Beow (XTWX)'ATTACX WX)'ATI (A B, ,— 0.
Using the identity 8 S( w) Y/ow,=— S(w) [ S( w)/ow,1S( w) ™' for a matrix
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S( w) being a function of w, we easily get

J %._w _ T 5y -1 T

ol (X X)'X D, e (4)
B w = (XX 'X"D,HD, e.~ (X" X)'X" D,H D ®)
ow,0ws | ,_, r s @ s r €

where D, is a diagonal matrix in which the i-th element is one and the other diagcnal

elements are all zero, and H = X/( x7 x) ' x"
A little complicated algebra together with (4) and (5) shows that

g

———aﬂ"’ =(I-Q(X"X'Xx" D, e %)
Z R

3B, s

dwgw, |~ U QX X)X D.(H-K)De »

—(I-Q(X"x)'x" D,(H-K) D, e
where @ = (X' X) 'ATTA(X" X 1'4AT1'4
and K= X(X"XTTATTA(X" X '4A717'4(x" X' X"  For he

perturbed model, the maximum likelihood estimator of & is

& =L-xB)Wy-Xx3B,)
=L(y=XB. ) Wy-XB. )
+1l(a B, ~oTAaXx"wx) A1 (A B, 0

and using the previous results (6) and (7) with a little further computation we get

35, 1 7

e =, € D, e (8)
r a=0

e =L " D,(K- H) D.+ D,( K~ H) D,] )

aw'aws =0 ""n e 7 s s e

The first order derivatives of the log-likelihood evaluated at 8= /b are easily obtained as

oL( 6)
28

AL( 6) _ )
o |, - 0. (11)

Using (6), (8), (10) and (11) it follows from (2) that LD = 0. In order to get LD we

= L ATTA(Xx"X)'ATI (A B.— 0 (10)
0 o

)

further need to compute the second order derivatives of the log-likelihood eavluated at 6= /b
that are given by
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9°L

na_aw% - L x"x
B B 0=? (4]

aaLaf; = —71—4 ATTA(X"X)'ATI (A B.—©
B 6= 8 o

3*L( 0) _ __m

3(02)2 9=7 2/(\)'4.

Using (7), (9), (10) and (11) the second term in (3) turns out to be zero and thus the

(r,s)-th element of LD is computed as

LD, = ieo’—f— 2T (CXTX)NI- QT X" X(I- @ X" X) ' x4

4. Example

We consider the chemical shipment data (Neter et al. 1996, p. 253), taken on 20 incoming
shipments of chemicals in drums arriving at a warehouse, in which the response variable y is
the number of minutes required to handle shipment, the first independent variable x; is the
number of drums in shipment and the second independent variable x, is the total weight of
shipment in hundred pounds. When the unconstrained regression model y= B+ Bix1+ Bxs+ ¢
is fitted to the chemical shipment data, the p-value for the F-test of the linear hypothesis

that 48,— B>=10 becomes 0998 and thus we can conclude that there exists a linear

relationship 48, — B»= 10 at any reasonable significance level.
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Figure 1. Index plot of the direction cosines in @y

An index plot of the direction cosines in dmy for the regression with 48, — B,=10 is
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provided in Figure 1 from which we can see that case 12 is remarkably distinct from the
other cases. The direction cosines for the other 19 cases except for case 12 are very small

Hence case 12 is an outlier for the regression with 48;— 83=10. This result can be

supported by investigating the e; : case 12 has the largest absolute residual 15.2 and the

other cases have small residuals relative to case 12.

5. Conclusions

A method of detecting outliers in constrained regressions has been suggested and it was
applied to a numerical example. As compared with the results from residual analysis, -he
method detects outliers well and it will be a useful diagnostic tool.
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