Inhibitory Effects of Quinizarin Isolated from Cassia tora Seeds Against Human Intestinal Bacteria and Aflatoxin $B_1$ Biotransformation

  • Lee, Hoi-Seon (Research Center for Industrial Development of Biofood Materials and Institute of Agricultural Science and Technology, College of Agriculture, Chonbuk National University)
  • Published : 2003.08.01

Abstract

The growth-inhibitory activity of Cassia tora seed-derived materials against seven intestinal bacteria was examined in vitro, and compared with that of anthraquinone, anthraflavine, anthrarufin, and 1-hydroxyanthraquinone. The active constituent of C. tore seeds was characterized as quinizarin, using various spectroscopic analyses. The growth responses varied depending on the compound, dose, and bacterial strain tested. At 1 mg/disk, quinizarin exhibited a strong inhibition of Clostridium perfringens and moderate inhibition of Staphylococcus aureus without any adverse effects on the growth of Bifidobacterium adolescentis, B. bifidum, B. longum, and Lactobacillus casei. Furthermore, the isolate at 0.1 mg/disk showed moderate and no activity against C. perfringens and S. aureus. The structure-activity relationship revealed that anthrarufin, anthraflavine, and quinizarin moderately inhibited the growth of S. aureus. However. anthraquinone and 1-hydroxyanthraquinone did not inhibit the human intestinal bacteria tested. As for the morphological effect of 1 mg/disk quinizarin, most strains of C. perfringens were damaged and disappeared, indicating that the strong activity of quinizarin was morphologically exhibited against C. perfringens. The inhibitory effect on aflatoxin $B_1$ biotransformation by anthraquinones revealed that anthrarufin ($IC_50,\;11.49\mu\textrm{M}$) anthraflavine ($IC_50,\;26.94\mu\textrm{M}$), and quinizarin ($IC_50,\;4.12\mu\textrm{M}$), were potent inhibitors of aflatoxin ${B_1}-8,9-epoxide$ formation. However, anthraquinone and 1-hydroxyanthraquinone did not inhibit the mouse liver microsomal sample to convert aflatoxin $B_1$ to aflatoxin ${B_1}-8,9-epoxide$. These results indicate that the two hydroxyl groups on A ring of anthraquinones may be essential for inhibiting the formation of aflatoxin ${B_1}-8,9-epoxide$. Accordingly, as naturally occurring inhibitory agents, the C. tora seed-derived materials described could be useful as a preventive agent against diseases caused by harmful intestinal bacteria, such as clostridia, and as an inhibitory agent for the mouse liver microsomal conversion of aflatoxin $B_1$ to aflatoxin ${B_1}-8,9-epoxide$.

Keywords

References

  1. Proc. Natl. Acad. Sci. USA v.87 Five of twelve forms of vaccinia virus expressed human hepatic cytochrome P450 metabolically activate aflatoxin B₁ Aoyama,T.;S.Yamano;P.S.Guzelian;H.V.Gelboin;F.J.Gonzalez https://doi.org/10.1073/pnas.87.12.4790
  2. Biochim. Biophys. Acta v.916 Anthraflavic acid is a potent and specific inhibitor of cytochrome P-448 activity Ayrton,A.D.;D.F.Lewis;C.Ioannides;R.Walker https://doi.org/10.1016/0167-4838(87)90177-4
  3. Agric. Chem. Biotechnol. v.45 Growth-inhibiting effects of flowers toward beneficial and harmful human intestinal bacteria Baek,B.R.;M.K.Kim;H.S.Lee
  4. Human Intestinal Microflora in Health and Disease Biotransformation of steroids Bokkenheuser,V.D.;J.Winter;D.J.Hentges(ed.)
  5. Br. Med. J. v.3 Resistance of the breast-fed infant to gastroenteritis Bullen,C.L.;A.T.Willis https://doi.org/10.1136/bmj.3.5770.338
  6. Food Sci. Biotechnol. v.11 Fatty acid composition of safflower seed oil and growth-promoting effect of safflower seed extract toward beneficial intestinal bacteria Cho,J.H.;M.K.Kim;H.S.Lee
  7. Planta Med. v.63 In vitro antimutagenic effects of anthraquinone aglycones and naphthopyrone glycosides from Cassia tora Choi,J.S.;H.J.Lee;K.Y.Park;J.O.Ha;S.S.Kang https://doi.org/10.1055/s-2006-957593
  8. J. Dairy Sci. v.67 Growth of bifidobacteria in milk and preparation of Bifidobactrium infantis for dietary adjunct Collins,E.E.;B.J.Hall https://doi.org/10.3168/jds.S0022-0302(84)81451-4
  9. Appl. Environ. Microbiol. v.53 Improbed method of screening for aflatoxin with a cocount agar medium Davis,N.D.;S.K.Iyer;U.L.Diener
  10. Cancer Res. v.35 Fecal bacteriology of colonic polyp patients and control patients Finegold,S.M.;D.J.Flora,H.R.Attebery;V.L.Sutter
  11. Human Intestinal Microflora in Health and Disease Biochemical pharmacology and toxicology involving the intestinal flora Goldman,P.;D.J.Hentges(ed.)
  12. Gastroenterology v.53 Studies of intestinal microflora. Ⅰ. Effects of diet, age, and periodic sampling on numbers of fecal microorganisms in man Gorbach,S.L.;L.Nahas;P.I.Lerner;L.Weinstein
  13. Human Intestinal Microflora in Health and Disease Role of the intestinal microflora in host defense against infection Hentges,D.J.;D.J.Hentges(ed.)
  14. Food Technol. v.45 Bifidobacteria:Their potential for use in American dairy products Hughes,D.B.;D.G.Hoover
  15. J. Microbiol. Biotechnol. v.12 Antibacterial activity of Pinus densiflora leaf-derived components toward human intestinal bacteria Hwang,Y.H.;H.S.Lee
  16. Chem. Res. Toxicol. v.6 Preparation of aflatoxin B₁8,9-epoxide using m-chloroperbenzoic acid Iyer,R.S.;T.M.Harris https://doi.org/10.1021/tx00033a010
  17. J. Microbiol. Biotechnol. v.12 Identification of Clostridium perfringens AB&J and its uptake of bromophenol blue Kim,J.D.;H.Y.An;J.H.Yoon;Y.H.Park;F.Kawai;C.M.Jung;K.H.Kang
  18. Agric. Chem. Biotechnol. v.44 Growth-inhibiting effects of herb plants on human intestinal bacteria Kim,M.K.;B.S.Park;B.S.Kim;H.S.Lee
  19. Agric. Chem. Biotechnol. v.44 Growth-inhibiting effects of vegetable extracts on beneficial and harmful human intestinal bacteria Kim,M.K.;M.J.Kim;D.H.Shin;C.G.Song;H.S.Lee
  20. Food Sci. Biotechnol. v.11 Growth responses of various flower extracts toward human intestinal microflora Kim,M.K.;H.S.Lee
  21. Yakugaku Zasshi v.106 Studies on the constituents in the roots of Cassia obrusifolia L. and the antimicrobial activities of constituents of the roots and the seeds Kitanaka,S.;M.Takido
  22. J. Microbiol. Biotechnol. v.11 Detection of Aspergillus and Penicillium genera by enzyme-linked immunosorbent assay using a monoclonal antibody Kwak,B.Y.;D.H.Shon;B.J.Kwon;C.H.Kweon;K.H.Lee
  23. Agric. Chem. Biotechnol. v.40 Growth responses of lactic acid bacteria to leguminous seed extracts Lee,H.S.;Y.J.Ahn
  24. J. Microbiol. Biotechnol. v.12 Inhibition of aflatoxin B₁biosynthesis by piperlongumine isolated from piper longum L Lee,S.E.;N.E.Mahoney;B.C.Campbell
  25. Cancer Res. v.38 Fecal profiles of anaerobic microflora of large bowel cancer patients and patients with nonhereditary large bowel polyps Mastromarino,A.;B.S.Reddy;E.L.Wynder
  26. Ann. Microbiol.(Paris) v.129B Amino acids produced by bifidobacteria and some clostridia Matteuzzi,D.;F.Crociani;O.Emaldi
  27. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, I. Originale v.195 Eine verbesserte Methodik der qualitativen und quantitativen Analyse der Darmflora von Menschen und Tieren Mitsuoka,T.;T.Sega;S.Yamamoto
  28. Can. Inst. Food Sci. Technol. J. v.23 Bifidobacteria and bifidogenic factors Molder,H.W.;R.C.McKellar;M.Yaguchi https://doi.org/10.1016/S0315-5463(90)70197-6
  29. Microb. Ecol. Health Dis. v.4 Effect of Bifidobacterium longum supplements on the human faecal microflora Orrhage,K.;A.Lidbedk;C.E.Nord https://doi.org/10.3109/08910609109140276
  30. Eur. J. Pharmacol. v.292 Activation of aflatoxin B₁by mouse CYP2A enzymes and cytotoxicity in recombinant yeast cells Pelkonen,P.;M.A.Lang;C.P.Wild;M.Ngishi;R.O.Juvonen
  31. J. Dairy Sci. v.78 Immune system stimulation by probiotics Perdigon,G.;S.Alvarez;M.Rachid;G.Aguero;N.Gobbato https://doi.org/10.3168/jds.S0022-0302(95)76784-4
  32. Nutr. Res. v.13 Induction of human cytokines by bacteria used in dairy foods Pereyra,B.S.;D.Lemonnier https://doi.org/10.1016/S0271-5317(05)80737-7
  33. J. Dairy Sci. v.71 Growth-enhancing supplements for various species of the genus Bifidobacterium Poch,M.;A.Bezkorovainy https://doi.org/10.3168/jds.S0022-0302(88)79926-9
  34. Chem. Res. Toxicol. v.5 Glutathione conjugation of aflatoxin B₁exo-and engo-epoxides by rat and human glutatione stransferases Raney,K.D.;D.J.Meyer;B.Ketter;T.M.Harris;F.P.Guengerich https://doi.org/10.1021/tx00028a004
  35. N. Eur. Dairy J. v.48 The role of dairy foods containing bifido-and acidophilus-bacteria in nutrition and health Rasic,J.L.
  36. Bifidobacteria and Their Role Rasic.J.L.;J.A.Kurmann
  37. Toxicology v.57 A review of the toxicity and carcinogenicity of authraquinone derivatives Sendelback,L.E. https://doi.org/10.1016/0300-483X(89)90113-3
  38. Bifidobacteria Microflora v.10 Tumor-suppressive effect of a cell wall preparation, WPG, from Bifidobacterium infantis in germfree and flora-bearing mice Tsuyuki,S.;S.Yamazaki;H.Akashiba;H.Kamimura;K.Sekine;T.Toida;M.Saito;T.Kawashima;K.Ueda
  39. J. Agric. Food Chem. v.47 Antioxidan:effects of extracts from Cassia tora L. prepared under different degrees of roasting on the oxidative damage to biomolecules Yen,G.C.;D.Y.Chung https://doi.org/10.1021/jf9810618
  40. J. Agric. Food Chem. v.46 Extraction and identification of an antioxidative component from Jue Ming Zi(Cassia tora L.) Yen,G.C.;H.W.Chen;P.D.Duh https://doi.org/10.1021/jf970690z
  41. Mutal. Res. v.240 Genotoxicity of naturally occurring hydroxyanthraquinones Westendorf,J.;H.Marquardt;B.Poginsky;M.Dominiak;J.Schmidt https://doi.org/10.1016/0165-1218(90)90002-J