SEMI-CONVERGENCE OF p-STACKS

Won Keun Min

ABSTRACT. We introduce the notion of semi-convergence of p-stacks and by using that notion we characterize the semi-interior, semi-closure, separation axioms and semi-continuity on a topological space. Also we introduce a new notion of p-semicompactness and investigate its properties in terms of semi-convergence of p-stacks.

1. Introduction

Levin introduced the concepts of semi-open sets and semi-continuity on a topological space and obtained many significant properties in [5]. Crossley and Hilderbrnd [2] introduced the concept of irresolute function on a topological space and investigated some its properties. Maheshwari and Prasad [6] studied the new separation axioms defined by semi-open and semi-closed sets. In 1993, Latif characterized the semi-continuity and irresolute function in terms of semi-neighborhoods. Also he studied semi-convergence of filters and tried to characterize semi-continuity and irresolute function in terms of semi-convergence of filters. Recently in [1], D. C. Kent and author introduced the notion of neighborhood structures and neighborhood spaces. In order to describe a convergence theory in neighborhood spaces, we introduced "p-stacks" which are more general than filters and showed a satisfactory convergence theory can be obtained for neighborhood spaces using the more general notion of a "p-stack".

In this paper, by using the notion of semi-convergence of *p*-stacks, we will characterize the semi-interior, semi-closure, separation axioms,

Received November 8, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 54A20, 54C08, 54D10.

Key words and phrases: p-stacks, semi-convergence of p-stacks, ultrapstacks, p-semicompact.

This work was supported by a grant from Research Institute for Basic Science at Kangwon National University.

semi-continuity on topological spaces. Also we will introduce a new notion of p-semicompactness and investigate its properties.

2. Preliminaries

Let X, Y and Z be topological spaces on which no separation axioms are assumed unless explicitly stated. Let S be a subset of X. The closure (resp. interior) of S will be denoted by clS (resp. intS). A subset S of X is called semi-open set [2] if $S \subset cl(int(S))$. The complement of a semi-open set is called semi-closed set. The family of all semi-open sets in X will be denoted by SO(X). A function $f: X \to Y$ is called irresolute [2] if $f^{-1}(V) \in SO(X)$ for each semi-open set V of Y. A subset M(x) of a space X is called a semi-neighborhood of a point $x \in X$ if there exists a semi-open set S such that $x \in S \subset M(x)$ [3].

Given a set X, a collection \mathbb{C} of subsets of X is called a stack if $A \in \mathbb{C}$ whenever $B \in \mathbb{C}$ and $B \subset A$. A stack \mathbb{H} on a set X is called a p-stack [1] if it satisfies the following condition:

(p) $A, B \in \mathbf{H}$ implies $A \cap B \neq \emptyset$.

Condition (p) is called the pairwise intersection property(P.I.P). A collection B of subsets of X with the P.I.P is called a p-stack base. For any collection \mathbf{B} , we denote by $\langle \mathbf{B} \rangle = \{A \subset X : \text{there exists } B \in \mathbf{B} \text{ such that } B \subset A\}$ the stack generated by \mathbf{B} , and if $\{B\}$ is a p-stack base, then $\langle \{B\} \rangle$ is a p-stack. We will denote simply $\langle \{B\} \rangle = \langle B \rangle$. In case $x \in X$ and $B = \{x\}$, $\langle x \rangle$ is usually denoted by \dot{x} . Let pS(X) denote the collection of all p-stacks on X, partially ordered by inclusion. The maximal elements in pS(X) are called ultrapstacks. It is obvious that every ultrafilter is an ultrapstack, and that every p-stack is contained in an ultrapstack. For a function $f: X \to Y$ and $\mathbf{H} \in pS(X)$, the image stack $f(\mathbf{H})$ in pS(Y) has p-stack base $\{f(H): H \in \mathbf{H}\}$. Likewise, if $\mathbf{G} \in pS(Y)$, $f^{-1}(\mathbf{G})$ denotes the p-stack on X generated by $\{f^{-1}(G): G \in \mathbf{G}\}$.

DEFINITION 2.1 ([3], [6]). Let (X,τ) be a topological space and $A \subset X$.

- (1) $sint(A) = \bigcup \{U \in SO(X) : U \subset A\};$
- (2) $scl(A) = \bigcap \{ F \subset X : A \subset F \text{ and } X F \in SO(X) \};$
- (3) X is $semi T_1$ if for every two distinct points x and y in X, there exist two semi-open sets U and V such that $x \in U, y \notin U$ and $y \in V, x \notin V$;
- (4) X is $semi T_2$ if for every two distinct points x and y in X,

there exist two disjoint semi-open sets U and V such that $x \in U$ and $y \in V$;

- (5) X is semi-regular if for semi-closed set H and $x \notin H$, there exist two disjoint semi-open sets U and V such that $H \subset U$ and $x \in V$;
- (6) X is semi-compact if each cover of X by semi-open sets has a finite subcover.

LEMMA 2.2 [1]. For $\mathbf{H} \in pS(X)$, the following are equivalent:

- (1) **H** is an ultrapstack;
- (2) If $A \cap H \neq \emptyset$ for all $H \in \mathbf{H}$, then $A \in \mathbf{H}$;
- (3) $B \in \mathbf{H}$ implies $X B \in \mathbf{H}$.

THEOREM 2.3 [1]. Let $f: X \to Y$ be a function and $\mathbf{H} \in pS(X)$. Then

- (1) If **H** is a filter, so is $f(\mathbf{H})$;
- (2) If **H** is an ultrafilter, so is $f(\mathbf{H})$;
- (3) If **H** is an ultrapstack, so is $f(\mathbf{H})$.

3. Main results

DEFINITION 3.1. Let (X, μ) be a topological space, $x \in X$ and let $\mathbf{S}_{\mu}(x) = \{V \subset X : V \text{ is a semi-neighborhood of } x\}$. Then we call the family $\mathbf{S}_{\mu}(x)$ the semi-neighborhood stack at x.

DEFINITION 3.2. Let (X, μ) be a topological space, $x \in X$, and $\mathbf{F} \in pS(X)$. A p-stack \mathbf{F} on X semi-converges to x if $\mathbf{S}_{\mu}(x) \subset F$.

From Definition 3.2, we get the following theorem.

THEOREM 3.3. Let (X, μ) be a topological space.

- (1) \dot{x} semi-converges to x, for all $x \in X$;
- (2) If **F** semi-converges to x and **F** \subset **G** for **F**, **G** \in pS(X), then **G** semi-converges to x;
- (3) If both **F** and **G** are *p*-stacks semi-converging to x, then **F** \cap **G** semi-converges to x;
- (4) If p-stacks \mathbf{F}_i semi-converge to x for all $i \in J$, then $\cap \mathbf{F}_i$ semi-converges to x.

THEOREM 3.4. Let (X, μ) be a topological space and $A \subset X$. Then the following are equivalent:

- (1) $x \in scl(A)$;
- (2) There is $\mathbf{F} \in pS(X)$ such that $A \in \mathbf{F}$ and \mathbf{F} semi-converges to x;
- (3) For all $V \in \mathbf{S}_{\mu}(x)$, $A \cap V \neq \emptyset$.

PROOF. (1) \Rightarrow (2) Let x be an element in scl(A), then $U(x) \cap A \neq \emptyset$ for each semi-open U(x) of x. Let $\mathbf{F} = \mathbf{S}_{\mu}(x) \cup \langle A \rangle$. Then the p-stack \mathbf{F} semi-converges to x and $A \in \mathbf{F}$.

 $(2) \Rightarrow (3)$ Let **F** be a *p*-stack and $A \in \mathbf{F}$ and *p*-stack **F** semi-converge to x. Then $\mathbf{S}_{\mu}(x) \subset \mathbf{F}$. Thus since $\mathbf{S}_{\mu}(x)$ is a *p*-stack, we get $U \cap A \neq \emptyset$ for all $U \in \mathbf{S}_{\mu}(x)$.

$$(3) \Rightarrow (1)$$
 It is obvious.

THEOREM 3.5. Let (X, μ) be a topological space, $A \subset X$. Then the following are equivalent:

- (1) $x \in sint(A)$;
- (2) For every p-stack **F** semi-converging to $x, A \in \mathbf{F}$;
- (3) $A \in \mathbf{S}_{\mu}(x)$.

PROOF. (1) \Rightarrow (2) Let x be an element in sint(A) and let \mathbf{F} be a p-stack semi-converging to x. Since $x \in sint(A)$, there is a semi-open subset U such that $x \in U \subset A$, so $A \in \mathbf{S}_{\mu}$. Thus by the definition of semi-convergence of p-stack, we can say $A \in \mathbf{F}$

(2) \Rightarrow (3) The semi-neighborhood stack $\mathbf{S}_{\mu}(x)$ is always semi-converges to x. Thus by the condition (2), $A \in \mathbf{S}_{\mu}(x)$.

$$(3) \Rightarrow (1)$$
 It is obvious.

Now by using semi-convergence of p-stacks, we characterize the properties of $semi-T_1$, $semi-T_2$ and semi-regular induced by semi-open subsets on a topological space.

THEOREM 3.6. Let (X, μ) be a topological space. Then the following are equivalent:

- (1) (X, μ) is $semi T_1$;
- (2) $\cap \mathbf{S}_{\mu}(x) = \{x\} \text{ for } x \in X;$
- (3) If \dot{x} semi-converges to y, then x = y.

- PROOF. (1) \Rightarrow (2) Let y be an element in $\cap \mathbf{S}_{\mu}(x)$, then $y \in U$ for each semi-open neighborhood U of x. Since X is $semi-T_1$, we get y=x.
- $(2) \Rightarrow (3)$ Let \dot{x} semi-converge to y. Since $\mathbf{S}_{\mu}(y) \subset \dot{x}$, x is an element in $\cap \mathbf{S}_{\mu}(y)$. Thus x = y.
- $(3) \Rightarrow (1)$ Suppose that X is not $semi T_1$, then there are distinct x and y such that every semi-open neighborhood of x contains y. Thus $\mathbf{S}_{\mu}(x) \subset \dot{y}$ and \dot{y} semi-converges to x. This contradicts the hypothesis. \square

THEOREM 3.7. Let (X, μ) be a topological space. Then the following are equivalent:

- (1) (X, μ) is $semi T_2$;
- (2) Every semi-convergent p-stack \mathbf{F} on X semi-converges to exactly one point;
- (3) Every semi-convergent ultrapstack \mathbf{F} on X semi-converges to exactly one point.
- PROOF. (1) \Rightarrow (2) Suppose that X is $semi-T_2$ and a p-stack \mathbf{F} semi-converges to x. For any $y \neq x$, there are disjoint semi-open sets U(x) and U(y) containing x and y, respectively. Since $\mathbf{S}_{\mu}(x) \subset \mathbf{F}$ and \mathbf{F} is a p-stack, both U(x) and X U(y) are elements of \mathbf{F} . Thus \mathbf{F} is not finer than $\mathbf{S}_{\mu}(y)$, so \mathbf{F} doesn't semi-converge to y.
 - $(2) \Rightarrow (3)$ It is obvious.
- $(3) \Rightarrow (1)$ Suppose that X is not $semi-T_2$. Then there must exist x, y such that $U(x) \cap U(y) \neq \emptyset$ for every semi-open sets U(x) and U(y) of x and y, respectively. Let \mathbf{F} be a ultrapstak finer than a p-stack $\mathbf{S}_{\mu}(x) \cup \mathbf{S}_{\mu}(y)$. Then \mathbf{F} is finer than $\mathbf{S}_{\mu}(x)$ and $\mathbf{S}_{\mu}(y)$, so the ultrapstack \mathbf{F} semi-converges to both x and y. This contradicts (2).

If (X, μ) is a topological space and $\mathbf{F} \in pS(X)$, then $\mathbf{B} = \{scl(F) : F \in \mathbf{F}\}$ is a *p*-stack base on X, and the semi-closure *p*-stack generated by \mathbf{B} is denoted by $scl(\mathbf{F})$.

THEOREM 3.8. Let (X, μ) be a topological space. Then the following are equivalent:

- (1) (X, μ) is semi-regular;
- (2) For every x in X, $\mathbf{S}_{\mu}(x) = scl(\mathbf{S}_{\mu}(x))$;
- (3) If a p-stack **F** semi-converges to x, then the semi-closure p-stack $scl(\mathbf{F})$ semi-converges to x.

- PROOF. (1) \Rightarrow (2) Let F be an element in $\mathbf{S}_{\mu}(x)$. There exists a semi-open neighborhood U(x) such that $U(x) \subset F$. Since X is semi-regular, there is a semi-open neighborhood W(x) of x such that $W(x) \subset scl(W(x)) \subset U(x) \subset F$. Since $scl(W(x)) \in scl(\mathbf{S}_{\mu}(x))$ and $scl(\mathbf{S}_{\mu}(x))$ is a p-stack, $F \in scl(\mathbf{S}_{\mu}(x))$.
- $(2) \Rightarrow (3)$ Let a *p*-stack **F** semi-converge to x. Then $\mathbf{S}_{\mu}(x) \subset \mathbf{F}$, and so $scl(\mathbf{S}_{\mu}(x)) \subset scl(\mathbf{F})$. By the condition (2), we get that $scl(\mathbf{F})$ semi-converges to x.
- $(3) \Rightarrow (1)$ Let U be a semi-open set containing $x \in X$. Since $\mathbf{S}_{\mu}(x)$ semi-converges to x, by (3) $scl(\mathbf{S}_{\mu}(x))$ semi-converges to x, and so $U \in scl(\mathbf{S}_{\mu}(x))$. Then by the definition of the semi-closure of p-stacks, we can get a semi-open neighborhood V of x such that $V \subset scl(V) \subset U$. \square

Latif [4] showed the following: Let X and Y be topological spaces. Then a function $f: X \to Y$ is irresolute if and only if for each x in X and each semi-neighborhood U of f(x), there is a semi-neighborhood V of x such that $f(V) \subset U$.

Now we get another characterization of the irresolute function on a topological space using the notion of p-stacks.

THEOREM 3.9. Let (X, μ) and (Y, ν) be topological spaces. If $f: (X, \mu) \to (Y, \nu)$ is a function, then the following statements are equivalent:

- (1) f is irresolute;
- (2) $\mathbf{S}_{\nu}(f(x)) \subset f(\mathbf{S}_{\mu}(x))$ for all $x \in X$;
- (3) If a p-stack **F** semi-converges to x, then the image p-stack $f(\mathbf{F})$ semi-converges to f(x).
- PROOF. (1) \Rightarrow (2) Let V be any member of $\mathbf{S}_{\nu}(f(x))$ in Y. Then there is a semi-open set W such that $W \subset V$. Since f is irresolute, there exists a semi-open neighborhood $U \in \mathbf{S}_{\mu}(x)$ such that $f(U) \subset W \subset V$, thus $V \in f(\mathbf{S}_{\mu}(x))$.
 - $(2) \Rightarrow (3)$ It is obvious.
- (3) \Rightarrow (1) If f is not irresolute, then for some $x \in X$, there is a semi-open neighborhood $V \in \mathbf{S}_{\nu}(f(x))$ such that for all semi-open neighborhood $U \in \mathbf{S}_{\mu}(x)$, f(U) is not included in V. For all $U \in \mathbf{S}_{\mu}(x)$, since $f(U) \cap (Y V) \neq \emptyset$, we get a p-stack $\mathbf{F} = f(\mathbf{S}_{\mu}(x)) \cup \langle Y V \rangle$. And since $U \cap f^{-1}(Y V) \neq \emptyset$, also we get a p-stack $\mathbf{G} = \mathbf{S}_{\mu}(x) \cup \langle f^{-1}(Y V) \rangle$ which semi-converges to x. But since $f(\mathbf{G})$ is a finer p-stack than \mathbf{F} and $Y V \in \mathbf{F}$, $f(\mathbf{G})$ can't semi-converge to f(x), contradicting to (3). \square

Now we introduce a new notion of p-semicompactness by p-stacks and investigate the related properties.

DEFINITION 3.10. Let (X, μ) be a topological space and A be a subset of X. A subset A of a topological space (X, μ) is p-semicompact if every ultrapstack containing A semi-converges to a point in A. A space (X, μ) is p-semicompact if X is p-semicompact.

EXAMPLE 3.11. Let $X = \{a, b, c\}$. In case τ is the discrete topology, let **H** be an ultrapstack containing a p-stack **F** generated by $\{\{a, b\}, \{b, c\}, \{a, c\}\}$. Then it doesn't semi-converge to any point in X. Thus the topological space (X, τ) is not p-semicompact. But in case $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$, the topological space (X, τ) is p-semicompact.

THEOREM 3.12. If a topological space (X, μ) is p-semicompact and $A \subset X$ is semi-closed, then A is p-semicompact.

PROOF. Let **F** be an ultrapstack containing A. From Definition 3.10, there is $x \in X$ such that **F** semi-converges to x. Thus $\mathbf{S}_{\mu}(x) \subset \mathbf{F}$, and since $A \in \mathbf{F}$ and **F** is a p-stack, $A \cap V \neq \emptyset$ for all $V \in \mathbf{S}_{\mu}(x)$. So by Theorem 3.4, we can say $x \in scl(A) = A$.

THEOREM 3.13. The irresolute image of a p-semicompact set is p-semicompact.

PROOF. Let a function $f:(X,\mu)\to (Y,\nu)$ be irresolute, let $A\subset X$ be p-semicompact, and let $\mathbf H$ be an ultrapstack containing f(A). If $\mathbf G$ is an ultrapstack containing the p-stack base $\{f^{-1}(H): H\in \mathbf H\}\cup \langle A\rangle$, then for some $x\in A$, $\mathbf G$ semi-converges to x, and $\mathbf H=f(\mathbf G)$ semi-converges to f(x). Thus f(A) is p-semicompact.

THEOREM 3.14. A topological space (X, μ) is p-semicompact if and only if each semi-open cover of X has a two-element subcover.

PROOF. Suppose **H** is an ultrapstack in X such that it doesn't semi-converge to any point in X. Then for each $x \in X$, there is a semi-open subset $U_x \in \mathbf{S}_{\mu}(x)$ such that $U_x \notin \mathbf{H}$. By Lemma 2.2(3), $X - U_x \in \mathbf{H}$, for all $x \in X$. Thus $\mathbf{U} = \{U_x : x \in X\}$ is a semi-open cover of X. But \mathbf{U} has no two-element subcover of X, for if $U, V \in \mathbf{U}$ and $X \subset U \cup V$, then $(X - U) \cap (X - V) = X - (U \cup V) = \emptyset$, contradicting the assumption that \mathbf{H} is a p-stack.

Conversely, let **U** be a semi-open cover of X with no two-element subcover of X. Then $\mathbf{B} = \{X - U : U \in \mathbf{U}\}$ is p-stack base, and any ultrapstack containing **B** cannot semi-converge to any point in X. \square

References

- [1] D. C. Kent and W. K. Min, *Neighborhood Spaces*, International Journal of Mathematics and Mathematical Sciences **32** (2002), no. 7, 387–399.
- [2] S. G. Crossley and S. K. Hildebrnd, Semi-closed sets and semi-continuity in topological spaces, Texas J. Sci. 22 (1971), 123-126.
- [3] R. M. Latif, Semi-convergence of filters and nets, Soochow Journal of Mathematics (to appear).
- [4] ______, On characterizations of mappings, Soochow Journal of Mathematics 19 (1993), no. 4, 475–495.
- [5] N. Levin, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [6] S. N. Maheshwari and R. Prasad, Some new separation axioms, Annales de la societe scientifique de Bruxelles, T. 89(III) (1975), 395–402.
- [7] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, A note on semi-continuity and precontinuity, Indian J. pure apple. Math. 13 (1982), no. 10, 1119-1123.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea

 $E ext{-}mail$: wkmin@cc.kangwon.ac.kr