MPEG-1 비디오 스트림의 다중 해상도를 위한 스트라이핑 기법

김 진 환

요 약

본 논문에서는 MPEG-1 비디오 스트림이 여러 해상도 수준으로 재생될 수 있도록 디스크 배열에 대한 스트라이핑 기법이 제시된다. MPEG-1 압축 알고리즘에 대한 본 논문의 다중 해상도 구현은 우선 현재의 비디오 스트림을 시간적 차원에서 분할한다. 분할된 서보스트림의 각 프레임은 각각 차원에서 저해상도용 컴퓨터와 선서 컴퓨터로 다시 분리된다. 멀티미디어 서버는 라운드 로빈 방식으로 서로 다른 컴퓨터들의 플로트를 스크립시온하여 저장한다. 결과적으로 해상도 수준이 낮게 유지될수록 고객에 의해 액세스되는 디스크들의 수가 적어지게 된다. 즉 디스크 배열을 효과적으로 이용하고 동시에 서비스되는 고객들의 수를 최대화하기 위하여 제시된 스트라이핑 기법은 서보스트림의 컴퓨터들을 디스크에 인터레이스하여 저장한다. 제시된 스트라이핑 기법은 서버의 성능을 개선할 수 있으며 이는 시뮬레이션을 통하여 실험적으로 검증되고 논석된다.

A Striping Technique for Multi-Resolution of the MPEG-1 Video Stream

Jinhwan Kim

ABSTRACT

We present a striping technique that MPEG-1 video streams on a disk array can be efficiently played back at different resolution levels. For the MPEG-1 compression algorithm, the proposed multi-level encoding technique first partitions the parent video stream in the temporal dimension. Each frame in the sub-stream is then partitioned in the chroma dimension yielding a low resolution and a residual component. The multimedia server stores blocks of different components on consecutive disks in a round robin manner. As a result, the lower the resolution level being maintained, the smaller is the number of disks accessed by each client. To effectively utilize a disk array and to maximize the number of clients that can be serviced simultaneously, the proposed technique interleaves the storage of the component of sub-streams among the disks in the array. We empirically validate and evaluate this striping technique through simulation in order to show the improvement of its performance on the server.

Key words: 디스크 배열, 스트라이핑, 다중 해상도, 다중 연결, 배치

1. 서 론

멀티미디어 용용 분야에서는 방대한 양의 정보를 효율적으로 처리하고 저장하기 위하여 여러 가지 압축 기술과 디스크 배열 장치 등이 사용된다[1, 2]. 멀티미디어 서버는 다양한 디스크를 연결하는 디스크 배열을 이용 저장장치로 사용함으로써 비용, 공간, 성능 등에 대한 장점을 추구할 수 있으며 멀티미디어 액체의 데이터 요구량을 충족할 수 있게 된다[3]. 그리고 멀티미디어 정보 서비스를 수행하는 서버는 대량의 데이터를 저장하기 위해 디스크 배열 장치의
에 압축 기술이 필요하며 특히 실시간으로 동영상에 전송하는 화상 회의 서비스 등의 응용은 압축된 동영
상 데이터를 전송함으로써 필요한 네트워크 데모로움을 줄이게 된다. 현재 이러한 압축 기술로는 실시간
동영상 서비스를 위한 H.264와 저장된 동영상 서
브스를 위한 MPEG-4 기법 등이 널리 사용되고 있
다. 1.5 Mbps 대역폭을 지향하는 MPEG-1 기법에서
는 비디오 스트림이 단일 해상도만 가지고 있는 반면
2~80 Mbps 대역폭의 MPEG-2 기법과 9~40 Kbps
대역폭의 MPEG-4 기법에서는 비디오 스트림이 2개
이상의 다중 해상도를 가질 수 있도록 표준 기술이
제정되어 있으며 이에 대한 구현이 현재 진행 중에
있다[6].

동영상 서비스의 품질은 제공되는 비디오의 해상
도에 따라 결정되기 때문에 사용자는 화면의 크기
또는 접속된 네트워크의 속도에 따라 최상의 해상도
로 감지하거나 낮은 해상도로 전송하는 대신 빠른
서비스를 원할 수 있다. 현재 MPEG-1 비디오 스트
림에서는 다양한 해상도가 제공되지 못하고 있다. 본
논문에서는 MPEG-1 비디오 스트림을 시간과 공간
의 중복성을 이용하여 4 단계의 해상도를 가질 수
있는 앵코딩 기법을 제시하며 단계별로 분류된 비디
오 서브스트림을 디스크에 보관하고 각 디스크에 경신하
며 배치하는 기법을 제시한다. 국내에서는 MPEG-1
비디오 스트림의 시간 차원을 이용하여 프레임(I, P,
B 프레이임) 종류별로 3 단계의 해상도가 지원되는 비
디오 재생 기법에 대해 연구 결과[7]가 발표된 바 있
다. 국외에서는 비디오 스트림의 재생용 밸리기
(fast-forward) 기능을 위하여 I 프레임과 P 프레이
임의 일부를 분리하여 두 개의 서브스트림을 구분하고
B 프레임은 밸리에 서브스트림으로 구성함으로써
색상과 공간 차원에서 다중 해상도를 제공하는 기법
들이[8,9] 발표된 바 있다.

본 논문에서는 MPEG-1 비디오 스트림이 4 단계
의 해상도를 지원하도록 I, P, B 프레임들을 두 개의
서브스트림으로 분리하고 각 서브스트림은 스트림의 두 개
의 컨포넌트로 분할하여 모두 4개의 컨포넌트가
구성되는 다중 해상도 앵코딩 기법이 제시한다. 그리고 각
컨포넌트는 디스크에 보관하고 복원은 로마 방식을 이용
하여 저장하고 배치하는 스타디움 기법도 제시된
다. 이러한 기법으로 구축된 멀티미디어 서버는 사용
자가 요구하는 다양한 해상도를 제공할 수 있으며

2.2 다중 해상도를 위한 앵코딩 기법

본 논문의 앵코딩 기법에서는 이미 압축된
MPEG-1 비디오 스트림의 I, P, B 프레임들을 구분
하여 I 프레임과 P 프레임으로 구성된 서브스트림
(sub-stream) 기반(base) 서브스트림으로 정의하
고 B 프레임으로 구성된 서브스트림을 강화
(enhancement) 서브스트림으로 정의하여 임의의 비
디오 스트림을 두 개의 서브스트림으로 구분한다[9].
MPEG-1 비디오 스트림을 색상과 공간의 차원에서
다중 해상도를 구비할 수 있는 효과는 DCT 계수들

2. 다중 해상도를 위한 앵코딩 기법

2.1 MPEG-1 압축 기법

MPEG-1 압축 알고리즘은 이미지의 시간과 공간
의 중복성을 이용하여 데이터를 압축한다. 압
축이 수행된 MPEG-1 비디오 스트림은 재생 구조와
일정 개수의 화면 또는 프레임들을 구성된 GOP (group of picture) 중이 형성된다[6]. 이 GOP 중은
I, P, B 프레임 등의 직렬들이 저장되며 임의로 접근할 수 있는 단위가 된다. 실제로 MPEG-1 비디
오의 한 GOP를 구현하는 프레임 수에 의해 서비스
품질(QoS: quality of service) 수준이 결정된다. 이
는 MPEG-1 표준의 압축 변수인 N과 M에 의하여
달라지며 N은 한 GOP 내의 프레임 수를 M은 I 또는
P 프레임이 나타나는 주기를 의미한다. 예를 들어
N=15, M=3일 경우 GOP 내에서 프레임들의 배열은
IBBPBBPBBPBBPBB기가 된다. 각 프레임은 여러 가
의 슬라이스로 구성되며 각 슬라이스는 인접된 마크
로 복록(macro block)으로 구성된다. 마크로 복록은
16x16 픽셀(pixell 크기를 가지며 이는 8x8 정사
크기를 갖는 4개의 명시도(luminance) 복록과 2개의
색도(chrominance) 복록으로 분할된다. 각 8x8 복록
은 DCT(discrete cosine transform) 계수들로 구성된다.
이용하여 데이터를 분할하는 것이다[9]. 비트율과 비디오 화질의 상대적인 중요성에 따라 P 프레임에 대한 8x8 블록의 DCT 계수 중 18~20개 정도를 저장할 수 있는 DCT 계수들을 잔여(Residual) 컴퓨터로 구성하여 비디오 재생시 저장량을 컴퓨터로 구성된 서브스트림 란들을 이용하여 빌리기 기능을 수행하는 기법이 논문[9]에서 제시된 바 있다. 그리고 이 논문에서는 비디오 스트림의 정상적인 재생시에는 기본 서브스트림과 강화 서브스트림이 모두 이용되고 있다. 즉 다중 해상도를 제공하기 보다는 빌리기 기능을 위하여 서브스트림과 컴퓨터로 구성된 것이다. 그러 나 본 논문에서는 기본 서브스트림의 I 프레임과 P 프레임은 물론 강화 서브스트림의 B 프레임을 각각 2개의 컴퓨터로 구성한다. 각 프레임의 모든 8x8 블록의 DCT 계수 중 20개를 저장함으로 컴퓨터로 구성하고 나머지 44개 계수를 잔여 컴퓨터로 구성하는 엔코딩 기법이 사용된다. 그러 결과 음영이 표 시된 저해상영 컴퓨터는 1개의 DC 계수(1번 계수)와 19개의 AC 계수(2번부터 20번 계수)가 각각 제 작된 채로 구성된다. 21번부터 64번까지 44개의 AC 계수들은 잔여 컴퓨터로 구성된다.

	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29					
1	3	5	8	14	17	27	30	43																										
2	4	9	13	18	36	61	44																											
3	10	12	19	25	32	45	54																											
4	11	20	24	33	40	46	53	55																										
5	21	23	34	39	47	52	56	61																										
6	22	35	38	48	51	57	60	62																										
7	36	37	49	50	58	59	63	64																										

그림 1. 8x8 블록의 저해상영 컴퓨터를 잔여 컴퓨터로 분할

3. 디스크 배열의 스타라이징 기법

3.1 스타라이징 기법

대용량의 데이터를 저장하고 높은 대역폭을 얻기 위해 텔레비디션이 사용하는 디스크 배열에 기초한 구조를 제시한다[10]. 이 경우에서는 다중 해상도를 가진 비디오 스타림을 디스크 배열에 인터리복(interleaving)하고 서버로 하여금 여러 해상도 수준에서 비디오 스타림들을 재생할 수 있는 효율적인 배치(placement) 기법을 기술한다. 이 기법은 특정 미디어 (본 논문에서는 비디오로 국한함) 스타림이 저장된 디스크의 수를 스타라이징 정도(degree of striping)로 정의하는 변수와 디스크에 인속적으로 저장되는 논리적 레이어의 최대량을 스타라이징 단위 (striping unit) 또는 미디어 블록(media block)으로 정의하는 변수로 구분한다[8].

비디오 재생시 주기적인 특성을 인하여 서버는 다수의 고객들을 주기적인 라운드 단위(예, 1초)로 서비스하게 된다. 각 라운드마다 서버는 고객을 위해 일정한 수의 미디어 단위(예, 동일한 비디오 프레임 또는 오디오 샘플)를 검색하여 인속적인 재생을 보장하기 위하여 액세스한 미디어 블록 또는 스타라이징 단위의 수가 재생될 때, 초당 재생되는 비디오 프레임 수를 충족시킬 수 있도록 하여야 한다. 이때
서비스 시간(한 라운드당 재생될 미디어 복록률은 디스크에서 장기간 시간이 라운드 시간을 초과해서는 안되며 초과하는 경우에) 미디어 재생시 복록률 성장이 발생하여 서비스 품질이 저하된다.

MPEG-1 비디오 스트림은 가변 비트율(VBR: variable bit rate) 압축 알고리즘이 이용되어서 스트림 내의 연속적인 비디오 단위의 크기를 변동한다. 이러한 변동성 때문에 고재사한 한 라운드리아 일정한 수의 미디어 복록률을 예측하기 어렵더라도 실제 예측되는 디스크 복록률의 수는 라운드리아 단위가 달라질 수 있다. 디스크 복록률의 크기가 고정된 경우 하나의 미디어 복록률은 한 개 이상의 디스크 복록률로 구성된다. 더욱이 라운드리아 고재사한 미디어 복록률은 디스크들의 집합이 다르기 때문에 예측되는 복록률의 수도 디스크별로 달라질 수 있다. 즉 일부 디스크에 대한 부하가 많아져서 서비스 시간이 라운드 시간보다 길어지면 복록률의 미디어 제공이 수행될 수 있다. 디스크에 대한 부하한 현상을 해결하려면 디스크 복록률 크기는 부하에 따라 디스크마다 균등하게 유지하는 것이 바람직하나 실제로 시간이 종종 서비스 시간을 초과할 수 있기 때문에 복록률의 크기를 재정성 부하에 대응할 수 있도록 하자. 본 논문에서는 이에 대한 구체적인 기술을 설명하여 각 디스크 복록률은 동일한 크기로 구성하는 것을 가정한다.

3.2 코본포트 배치
본 절에서는 비디오 스트림의 수용 양의 경우 수로 가정하여 양의 스트림 i(1 ≤ i ≤ N)에 대한 4개의 코본포트를 각각 B1, B2, B3, B4로 정의한다. 디스크 복록률의 디스크 수용 양의 경우 D라 할 때 스트림 i의 B1 코본포트는 i mod D 디스크에 저장되며 B2 코본포트는 i+1 mod D 디스크에 저장되며 B3 코본포트는 (i+2) mod D 디스크에 저장된다. 그리고 i번째 라운드리아에 재생될 스트림 i의 코본포트들을 본 논문에서 세그먼트 코본포트에 정의하며 B1(n), B2(n), B3(n), B4(n)으로 각각 표기한다. 각 세그먼트 코본포트는 본 논문에서 미디어 복록률에 대한 스트라이핑 단위 또는 미디어 복록률의 의미하여 해당 라운드리아 재생될 내용을 하나 이상의 디스크 복록률로 구성하기 위하여 이 디스크 복록률은 동일한 디스크에 인접하여 저장한다. 세그먼트 코본포트는 한 개 이상의 디스크 복록률로 구성되므로 마지막 디스크 복록률의 경우 단편화(fragment) 현상이 발생할 수 있다. 본 논문에서는 마지막 디스크 복록률의 경우 단편화 현상이 생기면서 라운드에 수행될 세그먼트 코본포트 복록률 내장한다. 예를 들어 B(n) 코본포트가 4개의 디스크 복록률으로 구성되었으나 마지막 복록률의 1/2이 바VectorXd은 B(n+1) 코본포트 내장된 라운드 및 라운드에 수행될 공급지에 저장되는 것이다. B(n) 코본포트의 복록률은 다음 라운드에 재생될 프레임을 가지고 있기 때문에 버퍼에 미리 포착함으로써 해당 라운드에 이 프레임들이 벌리 재생될 수 있도록 한다. 본 논문에서는 버디오 스트림의 재생을 위한 버퍼의 크기가 충분한 상황을 가정하였다.

한편 고정된 크기에 디스크 복록률을 사용함으로 동일한 라운드리아 하더라도 각 세그먼트 코본포트를 구성하는 디스크 복록률 수는 서로 다를 수 있다. 디스크 복록률의 수 D가 4인 디스크 배열에서 스트림 1이 i+1이 n번째 라운드리아 n+1번째 라운드리아에 수행될 세그먼트 코본포트가 구성된 예는 그림 2와 같다. 양의 경우 i로 나누어지기 때문에 가정하려면 스트림 1의 B1(n) 코본포트는 디스크 0에 저장되며 나머지 B2(n), B3(n) 코본포트들은 차례로 디스크 1, 디스크 2, 디스크 3에 각각 저장된다. 그리고 스트림 i+1의 B1(n+1) 코본포트는 세그먼트 코본포트는 라운드 복록률 방식을 이용하여 디스크 0에 저장되며 B2(n+1), B3(n+1), B4(n) 코본포트들은 디스크 2, 디스크 3, 디스크 0에 각각 저장된다. 스트림 i의 n+1 번째 세그먼트 코본포트 B1(n+1)는 B2(n) 코본포트와 동일한 디스크 0에 저장되며 나머지 B3(n+1), B4(n+1), B2(n+1) 코본포트들은 B2(n) 코본포트와 동일한 디스크 0에 각각 저장된다. 코본포트들의 코본포트들은 동일한 디스크와 동일한 디스크와 미리 저장된다.

그림 2의 디스크 배치 기법에서는 해상도가 가장 높은 1 단계의 경우 스트림을 구성하는 4개의 코본포트가 4개의 디스크에 저장되어 있으며 스트라이핑 정도가 4가 된다. 그리고 해상도가 가장 낮은 4 단계의 디스크에서 검색되는 코본포트가 1개씩 감소하게 되므로 스트라이핑 정도도 1개 감소된다.
본 실험에서 한 GOP는 매개변수 N=12, M=4를 이용하여 I 프레임 1개, P 프레임 2개, B 프레임 9개가 구성되며 프레임들은 IBBBPBBBPPBB 순서가 된다. 실제 비디오 스트림을 사용하는 대신 평균값을 이용하여 20개 스트림의 I, P, B 프레임을 구성하였으며 각 스트림은 4개의 컴퓨터로 분리되어 3.2절에서 개술된 방식에 의하여 4개의 디스크에 배치되었다. 20개 스트림들 중 임의의 스트림 1의 1번째 라운드에 수행될 세그먼트 컴퓨터 Bb(1)는 i mod 4 디스크에 저장되므로 스트림 4, 8, 12, 16, 20의 1번째 라운드를 위한 세그먼트 컴퓨터 Bb(1), Bb(1), Bb(1), Bb(1), Bb(1) 등은 디스크 0에 저장되며 1번째 라운드를 위한 다른 세그먼트 컴퓨터들은 라운드 별 방식으로 각각 디스크 1, 2, 3에 저장된다. 이와 같은 방법으로 스트림 1, 5, 9, 13, 17의 1번째 라운드를 위한 세그먼트 컴퓨터들은 디스크 2에 저장되며 2, 6, 10, 14, 18의 1번째 라운드를 위한 세그먼트 컴퓨터들은 디스크 3에 각각 저장된다.

실험에서 사용된 Seagate-Elliot3 디스크 빈도수의 설정은 표 1과 같다. 4개의 디스크로 구성된 디스크 배열에 대한 시뮬레이션을 CSIM 소프트웨어로 이용하여 구현하였으며 디스크 빈도의 크기는 2048 바이트로 구성하였다.

I 프레임	최소값 8200 바이트, 평균값 41000 바이트, 최대값 78800 바이트
P 프레임	최소값 2100 바이트, 평균값 105000 바이트, 최대값 188000 바이트
B 프레임	최소값 1000 바이트, 평균값 50000 바이트, 최대값 90000 바이트

| 4.2 성능 분석 |
| 4.2.1 단계별 해상도 |

상상도가 가장 높은 1 단계에서는 기본 서브스트림의 B, B, 컴퓨터 그리고 강화 서브스트림의 B, E 컴퓨터들이 모두 계산되며 1 단계보다 해상도가
가 난 2단계에서는 기본 서브스트림의 \(B_r, B_e \) 포맷트와 강화 서브스트림의 \(B_r, B_e \) 포맷트만이 재생된다. 1단계에서 재생된 화면과 2단계에서 재생되는 화면을 비교한 결과는 그림 3과 같다. 1단계에서 적용된 화면의 품질(그림 3의 (a))이 2단계에서 적용된 화면(그림 3의 (b))의 품질보다 우수함을 파악할 수 있다. 1단계와 2단계에서는 초당 2개의 GOP 즉 24개의 프레임이 모두 재생되는 반면 3단계와 4단계에서는 GOP 중 1 프레임과 P 프레임만으로 구성된 기본 서브스트림이 재생되기 때문에 결과적으로 초당 6개의 프레임(I 프레임 2개, P 프레임 4개)만이 재생된다. 따라서 1, 2단계의 화면과 3, 4단계의 화면은 화질 자체에 대한 차이가 있는 것이 아니며 단지 시간적 해상도가 달라지게 된다.

그리고 기본 서브스트림의 \(B_r, B_e \) 포맷트가 모두 재생되는 3단계의 화면과 기본 서브스트림의 \(B_r, B_e \) 포맷트만 재생되는 4단계의 화면은 그림 3과 동일한 결과를 갖게 된다. 즉 저해상도용 컴퓨터란의 재생이 없는 저해상도용 컴퓨터란 재생되는 화면보다 좋은 화질을 갖게 된다.

4.2.2 평균 서비스 시간

실험을 위한 멀티미디어 서비스는 20개의 비디오 스텝이 4개의 디스크에 배치된 상태에서 20명의 고객에게 각각 다른 비디오 스텝을 가장 높은 해상도 단계에서 제공할 수 있는 것으로 가정한다. 각 스텝의 재생속도는 24 fps (frames per sec)이며 한 GOP가 12개 프레임으로 구성되므로 세션에 서버는 각 고객에게 초당 2개의 GOP를 재생할 수 있도록 디스크에 배치된 컴퓨터들을 검색해야 한다. 본 실험에서는 컴퓨터를 구성하는 복합체가 디스크로부터 검색되는 시간을 서비스 시간이라 정정하며 한 라운드 시간을 1초로 설정하였다. 즉 서비스 시간은 라운드 시간보다 작거나 같을 때 비디오 스텝의 연속성이 유지되며 서비스 시간이 라운드 시간을 초과할 때는 불연속성이 발생하여 서비스 품질을 저하 시켜집니다.

디스크에서 복록의 크기 S 바이트로 검색될 복록의 수를 \(M \)이라 할 때 복록들을 검색하기 위한 서비스 시간 \(T_{service} \)은 다음과 같이 결정된다[8].

\[
T_{service} = M \cdot (t_s + t_r) + M \cdot S \cdot t_e \quad \text{(수식 1)}
\]

위 수식에서 \(t_s, t_r, t_e \) 시간은 각각 디스크에 대한 탐색 시간, 화면 지연시간, 1 바이트를 전송하기 위한 시간들이다. 그러나 본 논문에서는 디스크에서 검색될 모든 복록들에 대하여 탐색 시간과 화면 지연 시간이 별도로 필요한 것이 아님을 중점을 두었다. 즉 동일한 컴퓨터에 속한 복록들은 디스크내에 인접되어 구성될 가능성이 높기 때문에 복록별로 탐색 시간과 화면 지연 시간을 계산하는 디스크 컴퓨터별로 이러한 시간을 계산하게 된다. 따라서 본 논문에서는 다음과 같은 수식에 의하여 디스크에 대한 서비스 시간 \(T_{service} \)가 결정된다.

\[
T_{service} = M \cdot (t_s + t_r) + M \cdot S \cdot t_e \quad \text{(수식 2)}
\]

수식 2의 \(C \)는 액세스율 컴퓨터들에 수용되는 고객의 수이다. 20명의 고객이 20개의 스텝을 가장 높은 해상도 단계인 1 단계에서 각각 재생하는 경우 각 디스크는 대략 4 개의 디스크들로부터 검색된다. 그리고 \(t_e \)는 20명의 고객이 해상도를 한 단계씩 낮추어 20개의 스텝을

\((a) \) 저해상도용 컴퓨터란과 장이 컴퓨터란의 재생된 화면 비교

\((b) \) 저해상도용 컴퓨터란 재생된 화면

그림 3. 저해상도용 컴퓨터란과 장이 컴퓨터란 재생시 화면 비교
재생하는 경우에 대한 평균 서비스시간도 측정되었다. 해상도를 1단계에서 2단계로 한 단계 낮춘 경우 각 스트림에 대한 콤포넌트가 4개에서 3개로 감소하 여 각 디스크별로 15개의 콤포넌트에 대한 블록들이 검색된다. 각 디스크에서 검색되는 콤포넌트들의 수는 20개에서 15개로 25%가 감소하게 되는 실제 평균 서비스시간은 약 20% 정도 감소되는 것으로 나타났다. 이는 콤포넌트들을 구성하는 블록 수가 콤포넌트 수가 감소된 만큼 비례하여 감소되는 것이 아니며 프레임의 크기 변동성으로 인한 블록 수의 변동성에 기인한 것으로 분석된다. 다반가지로 해상도가 2단계에서 3단계로 낮춘 경우와 3단계에서 4단계로 낮춘 경우에 대한 평균 서비스시간도 모두 약 20% 정도 감소되는 것으로 측정되었다.

4.2.3 평균 블록 수

20명의 고객들이 20개의 스트림을 각각 20분간 재생하였을 경우 해상도 단계별로 각 디스크에서 라운드 시간인 1초 동안 검색된 평균 블록 수가 표 4에 기술되었다. 해상도 단계가 낮아질수록 검색되는 콤포넌트 수가 감소되며 이로 인한 디스크 블록 수가 감소되는 결과가 확인되었다. 각 콤포넌트를 구성하는 평균 블록 수들의 차이로 인하여 해상도가 1단계에서 2단계로 낮추는 경우는 검색되는 디스크 블록 수가 약 20% 정도 감소되었다. 해상도가 2단계에서 3 단계로 낮추는 경우에는 디스크 블록 수가 약 18.5% 정도 감소되어 해상도가 3단계에서 4단계로 되면 디스크 블록 수는 약 69% 정도가 감소되었다. 해상도 수준이 한 단계씩 낮아질수록 검색되는 콤포넌트들의 수가 25%씩 감소되는 것으로 디스크 블록들의 수가 감소되는 비율은 비교가 된다.

본 논문의 스테이징 기법에서는 디스크별로 검색되는 블록 수보다는 콤포넌트 수에 의해 디스크 서비스 시간이 결정되기 때문에 표 2와 3에서 기술된 바와 같이 디스크별 평균 서비스 시간은 평균 블록 수가 감소되는 비율보다는 콤포넌트 수가 감소되는 비율에 근거하여 시간이 감소되는 결과가 나타났다.

4.2.4 서비스되는 고객의 수

20명의 고객이 20개의 비디오 스트림을 1단계 해상도에서 검색하는 경우와 2단계에서 검색하는 경우에 대한 평균 서비스 시간은 실제 측정 결과 20%정도 차이가 나타났다. 이상적인 경우 20명의 고객이 해상도를 한 단계 낮추면 검색되는 콤포넌트 수가 25% 정도 감소하므로 20명에서 25% 추가된 5명의 고객들에게 한 비디오 스트림의 재생 요구를 수용할 수 있을 것으로 예상되나 실제 측정 결과 평균 서비스 시간은 20% 정도 감소되므로 20%에 해당하는 4명의 요구 만족 추가로 전속시킬 수 있다. 이 실험에서는 20개의 스트림에 대한 20개의 스트림을 콤포넌트별로 구성하여 디스크에 배치하였다. 20명의 고객에서 추가된 고객은 기존의 스트림이 아닌 새로운 구성된 스트림의 재생을 요구하게 된다.

실현 결과 2단계 해상도 수준에서 추가된 5명의 요구를 수용하면 서비스 시간이 라운드 시간인 1000ms 즉 1초를 초과하는 경우가 자주 발생하게 되어 비디오 스트림 재생시 불편성을 존재하게 된다. 연속적인 비디오 스트림의 재생을 보장하기 위하여 해상도를 한 단계씩 낮춘 경우 추가로 수용할 수 있는 고객의 수는 약 20%의 증가시키길 수 있는 것으로 분석되었다. 표 3에서 고객의 수가 단계별로 25%씩 증가하는 것은 이상적인 결과로 Ideal 경우에 해당하여 실제 실험 결과는 약 20% 정도의 증가된 actual

<table>
<thead>
<tr>
<th>표 2. 해상도 수준에 따른 디스크의 평균 서비스 시간</th>
</tr>
</thead>
<tbody>
<tr>
<td>해상도</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>디스크</td>
</tr>
<tr>
<td>1 단계</td>
</tr>
<tr>
<td>2 단계</td>
</tr>
<tr>
<td>3 단계</td>
</tr>
<tr>
<td>4 단계</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>표 3. 해상도 수준에 따라 디스크별로 검색된 평균 블록 수</th>
</tr>
</thead>
<tbody>
<tr>
<td>해상도</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>디스크</td>
</tr>
<tr>
<td>1 단계</td>
</tr>
<tr>
<td>2 단계</td>
</tr>
<tr>
<td>3 단계</td>
</tr>
<tr>
<td>4 단계</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>표 4. 해상도 수준에 따라 증가된 고객의 수</th>
</tr>
</thead>
<tbody>
<tr>
<td>해상도</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Ideal</td>
</tr>
<tr>
<td>Actual</td>
</tr>
</tbody>
</table>
5. 결 론

다중 해상도를 갖는 MPEG-1 비디오 스크립트를 구성하기 위하여 각 비디오 스크립트는 기본 서브스트림과 강화 서브스트림으로 분리되고 각 서브스트림은 다시 저해상도용 컴퓨터타와 전체 컴퓨터타로 분리된다. 각 서브평은 4개의 컴퓨터타로 분리되며 해상도 수준이 가장 높은 1단계에서는 4개의 컴퓨터타들 이 디스크에서 검색되며 해상도 수준은 한 단계씩 하향 조정할 때마다 검색되는 컴퓨터타가 1개씩 감소하게 된다. 가장 낮은 해상도 수준인 4단계에서는 각 서브타마다 1개의 컴퓨터타만(기본 스크립트의 저해상도용 컴퓨터타)이 스토리지로부터 검색된다. 각 서브타의 컴퓨터타들은 디스크 배열에 라운드 로빈 방식으로 배치함으로써 특정 디스크에 과부하가 발생하는 현상을 최소화하고자 하였다.

본 논문에서는 컴퓨터타로 구성된 비디오 스크립트가 디스크 배열의 각 디스크에서 검색되는 결과만 기술하고자 디스크에 대해 상황 분석에 집중하였다. 반면 버퍼, CPU 등에 어떤 시점이 보편적으로 제한적이었을지에 대해 구체적 실험 결과는 고려되지 않았다. 제작된 비디오 스크립트의 해상도 수준은 단계별로 낮춘 경우 각 디스크마다 검색되는 컴퓨터타들의 수가 감소되어 평균 서비스 시간이 약 20% 줄어들었다. 따라서 동시에 서비스할 수 있는 고객들의 수는 해상도 수준을 한 단계씩 하향 조정할 때마다 감소된 평균 서비스 시간의 비율이 20%만큼 증가할 수 있다. 해상도 수준이 낮아질수록 디스크에서 검색되는 블록의 수가 감소되기 때문에 비율이 평균 서비스 시간의 감소율과는 다르다. 이는 컴퓨터타를 구성하는 블록의 수가 프레임들의 크기 차이로 인해 변동되기 때문인 것으로 분석되었다. 본 논문에서의 다중 해상도 비디오 스크립트는 컴퓨터타에 배치함으로써 해상도 수준을 낮추는 경우 동시에 서비스할 수 있는 고객들의 수를 증가시킬 수 있으며 일시적으로 서비스 과부하가 발생한 경우에도 해상도 수준을 낮추어 고객들에게 일정한 재생을 보장되는 스트 라이핑 기법이 제시되었으며 이에 대한 성능 분석 결과가 기술되었다.

참 고 문 헌

[12] H. Schwetman, CSIM: a C-based, process-

김 진 환
1986년 서울대학교 컴퓨터공학과 졸업(학사)
1988년 서울대학교 컴퓨터공학과 졸업(석사)
1994년 서울대학교 컴퓨터공학과 졸업(박사)
1994년~1996년 서울대학교 컴퓨터시스템공동연구소 특별연구원
1996년~현재 한성대학교 컴퓨터공학부 부교수
판심분야: 멀티미디어 시스템, 분산 실시간 시스템

교신처
김 진 환 136-792 서울 성북구 삼산동2가 389 한성대학교
컴퓨터공학부