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A FUBINI THEOREM FOR GENERALIZED ANALYTIC
FEYNMAN INTEGRALS AND FOURIER-FEYNMAN
TRANSFORMS ON FUNCTION SPACE

SEUNG JUN CHANG AND IL YONG LEE

ABSTRACT. In this paper we use a generalized Brownian motion
process to define a generalized analytic Feynman integral. We then
establish a Fubini theorem for the function space integral and gen-
eralized analytic Feynman integral of a functional F' belonging to
Banach algebra S (Li!b[O, T7) and we proceed to obtain several in-
tegration formulas. Finally, we use this Fubini theorem to obtain
several Feynman integration formulas involving analytic general-
ized Fourier-Feynman transforms. These results subsume similar
known results obtained by Huffman, Skoug and Storvick for the
standard Wiener process.

1. Introduction

Let Cy[0,T] denote one-parameter Wiener space; that is the space
of real-valued continuous functions z(t) on [0,7] with 2(0) = 0. The
concept of L, analytic Fourier-Feynman transform(FFT) was introduced
by Brue in [1]. In [2], Cameron and Storvick introduced an Ls analytic
FFT. In [14], Johnson and Skoug developed an L, analytic FFT theory
for 1 < p < 2 which extended the results in [1, 2] and gave various
relationships between the L; and the L, theories. In [11, 12], Huffman,
Skoug and Storvick established a Fubini theorem for various analytic
Wiener and Feynman integrals.

In (3], Cameron and Storvick introduced a Banach algebra S of func-
tionals on Wiener space which are a kind of stochastic Fourier transform
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of complex Borel measures on L;[0,T]. In [6], Chang and Chung use a
generalized Brownian motion process to define a function space integral.
In [9], Chang and Skoug studied the analytic generalized FFT(GFFT)
on function space.

In this paper we extend the results of [11, 12] to a very general func-
tion space C, [0, T and Banach algebra S(L2 ,[0,T]). Recall that the
Wiener process is free of drift and is stationary in time, while the sto-
chastic processes considered in this paper are subject to a drift a(t) and
are nonstationary in time.

2. Definitions and preliminaries

Let D = [0,T] and let (Q, B, P) be a probability measure space. A
real valued stochastic process Y on (Q,B,P) and D is called a gen-
eralized Brownian motion process if Y (0,w)=0 almost everywhere and
for 0 =ty < t; < --- < t, < T, the n-dimensional random vector
(Y (t1,w), -, Y (tn,w)) is normally distributed with density function

K (&) = (@m) [] 0 - b)) ™

1 ((n; — a(t;)) — (nj—1 — a(t;—1)))*
'e"p{"i . b(t;) — b(t;—1) }

where 7= (01, ,7n), Mo = 0, £ = (t1,-++ ,tn), a(t) is an absolutely
continuous real-valued function on [0, T] with a(0) = 0, a’(t) € L?[0,T],
and b(t) is a strictly increasing, continuously differentiable real-valued
function with b(0) = 0 and () > 0 for each t € [0,T].

As explained in [16, pp.18-20], Y induces a probability measure y on
the measurable space (RP, BP) where R? is the space of all real valued
functions z(t), t € D, and BP is the smallest -algebra of subsets of R
with respect to which all the coordinate evaluation maps e;(z) = z(t)
defined on R? are measurable. The triple (R?, BP, 1) is a probability
measure space. This measure space is called the function space induced
by the generalized Brownian motion process Y determined by a(-) and
b().

We note that the generalized Brownian motion process Y determined
by a(-) and b(-) is a Gaussian process with mean function a(t) and co-
variance function r(s,t) = min{b(s),b(t)}. By theorem 14.2 [16, p.187],



A Fubini theorem for generalized analytic Feynman integrals 439

the probability measure i induced by Y, taking a separable version, is

supported by C, 4[0,T] (which is equivalent to the Banach space of con-

tinuous functions z on [0, 7] with z(0) = 0 under the sup norm). Hence

(Cap]0,T], B(Co]0,T)), ) is the function space induced by Y where
B(C,[0,T7]) is the Borel o-algebra of C, 5[0, T7.

A subset B of C, [0, T] is said to be scale-invariant measurable pro-
vided pB is B(C, [0, T])-measurable for all p > 0, and a scale-invariant
measurable set NV is said to be scale-invariant null provided p(pN) =0
for all p > 0. A property that holds except on a scale-invariant null set
to hold scale-invariant almost everywhere(s-a.e.) [4, 10, 15].

Let L2 ,[0,T] be the Hilbert space of functions on [0, T] which are
Lebesgue measurable and square integrable with respect to the Lebesgue
Stieltjes measures on [0, 7] induced by a(-) and b(-); i.e
(2.2)

12,00,T] = {v : /OT 2(4)db(s) < o0 and / (s)dJa|(s) < }

where |a|(t) denotes the total variation of the function a on the interval
[0, ¢].
For u,v € L2 ,[0,T], let

T
(2.3) (4 0)ap = / w(tyo(t)d[b(t) + |al (1))

Then (-,)a, is an inner product on L2 ,[0,T] and f|ullap = v/ (4, t)as
is a norm on La, [0,T]. In particular note that ||ull,p = 0 if and only
if u(t) = 0 a.e. on [0,T]. Furthermore (L2 ,[0,T7], || - la,6) is a separable
Hilbert space.

Let {¢;}32, be a complete orthogonal set of real-valued functions of
bounded variation on [0, T] such that

0, Jj#k
(¢J7¢k)a,b == { 1’ j —k
and for each v € L2 ;[0,T], let
(2.4) = (v,6;)an®;(t)

j=1



440 Seung Jun Chang and Il Yong Lee

for n = 1,2,---. Then for each v € Lg,b[O,T], the Paley-Wiener-
Zygmund(PWZ) stochastic integral (v, z) is defined by the formula

T
(2.5) (v,z) = lim v (t)dx(t)

for all © € C,[0,T] for which the limit exists; one can show that for
each v € Li,b[O,T], the PWZ stochastic integral (v, z) exists for y-a.e.
NS Ca,b[O,T].

We denote the function space integral of a B(C, 5[0, T])-measurable
functional F by

(2.6) / o @

whenever the integral exists.
We are now ready to state the definition of the generalized analytic
Feynman integral.

DEFINITION 2.1. Let C denote the complex numbers and let C; =
{Ae C:Re) > 0}. Let F: C,p[0,T) — C be such that the function
space integral

J) = / FO\Y22)du(z)
C..5[0,T]

exists for all A > 0. If there exists a function J*(\) analytic in C, such
that J*(A) = J(A) for all A > 0, then J*(X) is defined to be the analytic
function space integral of F' over C, [0, 7] with parameter A, and for
A € Cy we write

2.7) / T F@)du(z) = T

Co u[0,7T]

an )

Let g # 0 be a real number and let F be a functional such that Ca [0T]

F(z)du(z) exists for all A € C;. If the following limit exists, we call it
the generalized analytic Feynman integral of F' with parameter ¢ and
we write

anf, anx
(2.8) / F(z)du(z) = lim P(2)du(z)
Cab[0,T] A==ig Jc, 4[0,T)
where A\ approaches —iq through C,.
Now, we give the definition of the Banach algebra S(L? [0, T)).
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DEFINITION 2.2. Let M(LZ ,[0,T]) be the space of complex-valued,
countably additive Borel measures on L2 ,[0,7]. The Banach algebra

S (Lzyb[O, T1) consists of those functionals F on C, [0, T expressible in
the form

(2.9) F(z) = /L o PRI

for s-a.e. € C, [0, T] where the associated measure f is an element of
M(LZ ,[0,T)).

REMARK 2.3. (i) When a(t) = 0 and b(t) =t on [0,T], S(L2,[0,T])
reduces to the Banach algebra § introduced by Cameron and Storvick
in [3]. For further work on S, see the references referred to in Section
20.1 of [13].

(i) M (Lib[O, T)) is a Banach algebra under the total variation norm
where convolution is taken as the multiplication.

(iii) One can show that the correspondence f — F is injective, car-
ries convolution into pointwise multiplication and that S(L? ,[0,71) is a
Banach algebra with norm

iFn=nsl=f

a,b 0’

ldf (v)].
T]
In (3], Cameron and Storvick carry out these arguments in detail for the
Banach algebra S.

The following function space integral and generalized analytic Feyn-
man integral formulas are used several times in this paper [5, 9].

2(v2 b
(2.10) /Oa,b[o,T] exp{ia(v, z) }du(z) = exp{—(—z’lz—) + ia(v,a/)}

for all & > 0, and

(2.11) /anf" exp{z'(u,m)}du(x)=exp{—3(%93+i(é)%(v,a’)}

Cq.,[0,T7]

for all real g # 0, (i/ q)% is always chosen to have positive real part and
v e LZ,[0,T] where

T T
(2.12) (v, ') = /0 o(t)a! (£)dt = /0 o(t)da(t)

and

T T
(2.13) () = /0 V() (t)dt = /0 v (t)db(t).
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REMARK 2.4. If a(t) = 0 on [0, T}, then for all F € S(L2 [0, T]) with
associated measure f, the generalized analytic Feynman integral of F'
will always exist for all real ¢ # 0 and be given by the formula

(2.14) / " @) = / exp{—M}df(u).

Ca.0[0,T] 12 ,[0,7) 2q

However for a(t) as in this section, and proceeding formally using equa-
tions (2.9) and (2.11), we see that fg':ffo ) F(@)dp(z) will be given by
the formula '

(2.15) :
/can:o:rl F(z)du(z) = /Lg,b[o,TJ eXP{_i(szr’;b/l H(%) ﬁ (U’al)}df(v)

if it exists. But the integral on the right hand-side of (2.15) might not
exist if the real part of

1
i(v?,b) (z)i ,}
2.16 expy ——————— +1{ — v,a
(2.16) p{-15 2 4i( 1) )
is positive. However
(2.17)

{5 () )| S, o0

and so the generalized analytic Feynman integral of F' will certainly exist
provided the associated measure f satisfies the condition

T
(2.18) Ahmﬁm@MW”AMMWM®%MM<m-

3. Generalized Feynman integrals

In this section we establish a Fubini theorem for the function space
integral and the generalized analytic Feynman integral for a functional
F in a Banach algebra S(L2 ,[0,T]). We also use this Fubini theorem
to establish several generalized analytic Feynman integration formulas.

In our first Lemma we obtain a Fubini theorem for function space
integrals of a functional F' € S(LZ ,[0,T}).
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LEMMA 3.1. Let F be an element of S(L2 ,[0,T]) given by (2.9).
Then for ail o, 8 > 0,

/Ca,b[o,:r] [/Ca,b[o,:r] Flay + ﬂz)dﬂ(y)] du(z)
B /Ca,b[o,T] [/Ca,b[o,:r] Flay+ ﬂz)d“(z)} du(y).

In addition, both expressions in (3.1) are given by the expression

(3.1)

1 , . ’
(3.2) /Lg,b[o,T] exp{ - 5(0[2 + %) (v?,b ) +i(a+ B)(v,a )}df(v).

Proof. Since F' is an element of S(L2 ,[0,T]), we have

(3.3) [ 1FGn)lduta) < oo
Ca,b[O,T]

for each p > 0. Hence by the usual Fubini theorem, we have the equation
(3.1) above. Further, by using (2.10), we have for all a, 3 > 0,
(3.4)

Flay + Bz)du(y) | du(z)
/CabOT][/abOT ]
-/ . I [ /L , Pl o)+l B ey due)
N /Lg,b[o,:r] /Ca,b[0,T] o Life 5k
1/ o e i) b))
(L et s
< [ omeo{ 3D et ) b
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THEOREM 3.2. Let qy be a nonzero real number and let F' be an ele-
ment of S(LZ [0, T]) given by (2.9) whose associated measure f satisfies
the condition

CON o exp{4nzqo|-1/2 / ' lv(s)ldlar(s)}ldf(v)l < co.

Then for all nonzero real numbers ¢ and g2 with |q1| > |qol, |g2] > |qo]

and q +q2 # 0,
/cqu2 [
Ca,b[O,T]

anf _qjaz

(3.6) - / WHE p (o))

Ca,5[0,T)
/anfq1 l:
B Cas[0,T]
where F,, 4, Is given by (3.11) below.

Also, all expressions in (3.6) are given by the expression
(3.7)

[l A2 ena()' () Yoo

Proof. Using the usual Fubini theorem, (2.15), and (2.10), we have
that for all Ay > 0,

/ " F(y + z)du(y)] du(z)

Ca (0,7}

/ " s z)du(z)] auly)

Co,5[0,T)

-/Ca,b[O,T] [/aan1 F(y + Agl/zz)du(y)] du(z)

Co,5[0,T7]

anfq,
= [ LT e it auw)
Lﬁ,b[()’T] Ca,b[OxT] Ca,b[O»T]

e {0520, 2) () )

. L
[ e ()
L2 ,[0,T] 2q Q1
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1 . exp{i2; "/ (0, }du(2)| a0

9 N
— / exp{_M +Z<_l_) (U,a//)
L2 ,[0.T] 2q1 o

_ __(”22;21’,) + i)\z_l/z(v,a’)}df(v).

But the last expression above is an analytic function of C; and is a
continuous function of A in C; = {A € C: XA # 0 and ReX > 0}, and
so setting Ay = —igq yields (3.7).

‘Also, using (2.15) with ¢ replaced with g, we obtain that for all
A1 >0

/ca,b[o,T] [/ o FOC Py + Z)dﬂ(z)] du(y)

Co.5[0,T]

— (Uz’b,) y—1/2 ’
(3.9) —/Libmexp{ o, T (a)

_i@%Y) “(q%) %(v,a’)}df(v).

2¢2
By the same argument with A\; = —ig;, we have the expression (3.7)
above. Moreover, the expression (3.7) is equal to
(3.10)

/ exp{—i <l + i) (’112 b))+ Z(i + i>%(U a/)}df (v)
L2 ,0.7] 2\q1 @ ’ ) ’ e

o ()
a,bl™?

[N

(wa')}dfql,qz (v)

q1+9q2 q1+q2
anf q_;z
. q1+a2
= [ By ()dlz)
Ca,b[O,T]
where

(3.11) Frn@= [ eplit,0)dfn0)
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and
(3.12)
far,0:(E)

SN [ , (Z z)% , }
= expst{ [ — ) +(— v,0') —i| — 4+ — v,a’) pdf (v
/E p{ ((‘h) (%) )( ) G2 ( ) @)
for every E € B(LZ ,[0,T]). Finally, we have that
1 a1,2l

- / s 00 (0)]
L2 ,[0,7]

< /Lg,,,[o,:r] exr>{l2qll“1/2 /OT Iv(S)ldlal(S)}

exp{ a7 [ ' o(s)dlal(s)}
exo o / ' Iv(s)IdIal(s)}ldf(v)l

= /L;bm,ﬂ e"p{‘*'z%"” ’ /0 |U(S)|dlal(8)}fdf(v)| < oo.

[N

(3.13)

2q1q2
Q1+ q

Hence fq, 4, is an element of M (LZ [0, T]) and so Fy, 4, is in S(L2 [0, T}).
Thus we have the desired results. g

COROLLARY 3.3. Let g9 and F be as in Theorem 3.2. Then for all
real ¢ % 0 with |g| > |qo],

(3.14)

anfq anfq anfq/2

/ [ / F(y+z)du<y)]du(z>= [ Fa@iut

Co.,5[0,T] LV C, 5[0,TY C..510,T)
where
(3.19) Foa@) = [, explife,a)}dfua(v)

L2 ,[0,T]

and

(3.16) fq,q(E):/Eexp{m(é)%(v,a')—i(%f)%(v,a')}df(v)

for every E € B(L2,[0,T]).
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THEOREM 3.4. Let go be a nonzero real number and let F' be an ele-
ment of S(LZ ,[0,T)) given by (2.9). Let q1,- -+ ,qn_1 and gy, be nonzero
real numbers satisfying the followings;

1) gl = lgo| forallj=1,--- ,n;
ii) foralljl=1,---,n,¢+q#0

k
i) forallk=2,---,n, > L_l;iqk £ 0.
j=1r

Suppose that the associated measure f of F satisfies the condition

T
X n —1/2 v alls v
s [ o p{2 2a0™2 [ fo(s)ldal )}ldf( )| < oo

form=1,2,---, then

anfq, anfq,
/ / F(yr + - +yn)du(yr) - - - du(yn)

Ca,5[0,T] Co,b[0,T]
(3.18) anfo
= Fyy o g, (T)dp()
Cq (0,7
where o, = ==t{% and F,, ... ,. is given by equation (3.21) below.
j=1 a;

In addition, both expressions in (3.18) are given by the expression

(3.19) /Li,b[O’T] exp{—% zn: %(02, B+ z:; (é) : (v, a')}df(v).

j=1%
Proof. Using equation (3.6) repeatedly, we obtain that

anfq, anfq,
/ / Flyi+ -+ yn)dpu(y1) - - dp(yn)
Ca.b[OaT] Ca,b[O)T]

an fq, anqu
(3.20) = / /
Ca,5[0,T) Ca,b[0,T]

anf a1z
' / T P (Z1+ys oo+ yn)dp(z)dp(ys) - - - dp(yn)
ca,b[O’T]



448 Seung Jun Chang and Il Yong Lee

/anfqn /a‘nf‘“l
Ca5[0,T) Ca (0,7

anf fl 92493

9192+49193+49293

/ FQ1,42Q3(22+y4+"'+yn)
Co,5[0,T)

- du(z2)du(ys) - - dp(yn)

anfa,
= [ Py @)in(o)

Co,5[0,T]

where

(3.21) Fy . . () =/2 o exp{i(v, ) }dfy, ... 4. (V)

and
(3.22)
far, e qn (B exp{z ( ) (v,a’) — z(Z i) (v,a')}df(v)
j=1 =Y
for every E € B(L2 ,[0,T]). Finally, we have that
(3.23)
Vo aull = [ W @)
L7 0o,

n

<[ gbmexp{pzqﬂ 1/2 / w(s)dlal(s) }
.exp{|2an|‘”2 / Tlv(s)ldlal(s)}ldf(v)l

n T
X |=1/2 v
</ on® p{2ZI2qgl /0 I(s)ld!al(s)}ldf(v)l

j=1
T
X n -1/2 S a v .
< /Lgbme p{z 22 [ uto)ld I(S)}ldf( )| < oo

Hence f4,,.. ¢, is an element of M(LZ2,[0,T]) and so F .. . is in
S(LZ 4[0,T]). Thus we have the desired results. a

Choosing ¢; = ¢ for j = 1,--- ,n, we obtain the following corollary
to Theorem 3.4.
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COROLLARY 3.5. Let g9 be a nonzero real number and let F' be

an element of S(LZ ,[0,T]) given by (2.9) whose associated measure f
satisfies the condition

T
(3.24) /Lib[o’T] exp{2n|2q0|—1/2/0 |v(s)|d|a|(s)}|df(v)| < 00

forn=1,2,---. Then for all real q with |g| > |qo|,

anfq anf,
/ . / Fly1 + -+ yn)dp(y1) - - dp(yn)

Cqo (0,7 Cq 5[0,T]
(3.25) anfom
= / Fy ... o(@)du(z)
Ca,b[O,T]
where

(3.26) Fy... q(x) =/L2 o exp{i(v,z) }dfy,... 4(v)

and

(3.27) fq,.._,q(E)=/Eexp{m($)%(v,a')-¢<—iqﬁ>%(v,a')}df(u)

for every E € B(LZ2 ,[0,T)).

REMARK 3.6. Note that each of the iterated integrals in equation
(3.18) above can also be expressed in (n! — 1) other similar ways; for
example, all of the expressions in (3.18), also equal the expression

an
f_g_____ anfq,

(3.28) Xi= T Fupro g (y1 + z)dp(y1)dp(z)
a b[O T] a b[o T

where
(329)  Fpyo g (@) = / exp{i(v,2)}dfy . (V)
L2 .[0,T]

and
(3.30)

o= [l 53 (5 2) o

=
for every E € B(L? ,[0,T7).
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LEMMA 3.7. Let qo be a nonzero real number and let F' be an element
of S(LZ% [0, T)) given by (2.9) whose associated measure f satisfies the
condition (2.18) with q replaced with qo. Then for all nonzero real
number q and for all & > 0 with |ag| > |qo|,

anfaq anfq T
Ga [ 7 F@due) - / F(J2)dua).

Co,5[0,T) Co,,b[0,T)

Proof. By using (2.15), we see that

/ " Pa)duta)

Cq,b[0,T]

= i3, b)) i 3 /
B /Lgyb[O,T] exp{__z_a_&_ "H(a_q) (v,a )}df(v)
? b/ . 1 % a/
) /Lz,b[o,T] w{-5g0 ) +i(5) g pa

/anfq x
= F(—=)du(z).
Casl0T] V@

The generalized analytic Feynman integral in equation (3.32) exists

because
/Lg,b (0,7

T
ex -1/ v [
a3 < [ o p{|2aq| ve | I(S)Idlal(S)}Idf( )

exp{—ﬁ(vz, o) + z(aiq) %(v, a')}‘ldf(v)l

< / o exp{|2q0|~1/2 / ' lv(s)ldlal(s)}ldf(v)l <o,

Hence we have the desired result. ]

THEOREM 3.8. Let gy be a nonzero real number and let F be an
element of S (Lg,b[O, T)) given by (2.9) whose associated measure f sat-
isfies the condition (3.5). Let o, 3 > 0 and let q; and g be nonzero real
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numbers with |q1|/a? > |qol, lg21/8? > |qo| and B%q; + a®qa # 0. Then

/oqu2 [ /anf'n F(ay+ﬁ2)dﬂ(y)] dp(z)

Cq,5[0,T) LV C, 1[0,T)

anf g1 9
= [P s e )d(o)
C, b[O T}

(3.34)

where Fy, /42 4,/p2 is given by (3.37) below.

Also, both expressions in (3.34) are given by the expression
(3.35)

: N 1
oA Do) ()
L2 [0,T] 2\q1 ¢ o e

Proof. By using (3.31) and (3.6), we see that

anfq, anfqy
/ [ / Foy + Bz)du(y) | du(z

Ca,b[O:T] Ca,b{O’T]

szq2 anf, ja2
[/ F(y + Bz)du(y) }du(z

Ca,5[0,T7] Co,b{0,T]
an

q1/a? anfq2
(3.36) = / ' U Fly + B2)dp(z) |duly
Co,5[0,T] Cq (0,7

anfql/a2 a"fqz/ﬁ2
U Py + z)dp(z) }du(y
Ca, »[0 T

anf

el | a1/a2,g5/62 (2)dp()
Ca,5[0,T)

Ca,5[0,T)

where
(3.37) Fy, ja2,q./8 (z) = / eXp{i<Ua$>}de1/az7Q2/ﬁ2 (v)
12 ,[0,7]

and
(3.38)

far /a2 g0/52(E) = /E exp{@'(Ct((—j;) iﬂ(;—;) %> (v,a)

_ i(z‘(ﬁ?ql + Oé2Q2)) o) } o)

q192
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for every E € B(L2 ,[0,T)).

Moreover, we have that

Vasaragsell = [ Wisjo gsonte)
L3 ,10,T]

a,bl™?

(3.39) .exp{|2q1/a2|-1/2 /0 ' |U(s)|d]a|(s)}
- eXP{I2Qz/ﬁ2|‘1/2 / ' lv(S)Idlal(S)}ldf(v)l
<[ o exp{4l2qo|“1/2 / ' (sl dlal(9) Jaf ()] < .

Hence fy,/a2,4,/82 is an element of M(Liyb[O,T]) and 50 Fy, /42 q,/8 18
in S(LZ ,[0,T]). Thus we have the desired results. O

4. Generalized Fourier-Feynman transforms

In this section, we will establish a Fubini theorem for analytic GFFT
for functional F' € S(L2 ,[0,T]). Then, as corollaries we will obtain sev-
eral Feynman integration formulas involving analytic GFFT. For sim-
plicity, we restrict our discussion to the case p = 1; however most of our
results hold for all p € [1,2].

We state the definition of the analytic GFFT [7, 9].

DEFINITION 4.1. For A € C; and y € C, [0, 7], let

(4.1) e = [ [0 P+ 2)inte).

Then for ¢ € R — {0}, the L; analytic GFFT, Tq(l)(F) of F, is defined
by the formula (A € C4)

(42) TOF)) =, lim TA(F))
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for s-a.e. y € Cy [0, T] whenever the limit exists. That is to say,

anfy

(4.3) TO(F)(y) = /C . Flr i)

for s-a.e. y € Cy 5[0,

We note that if Tq(l)(F) exists and if F' = G, then Tq(l)(G) exists and
1 1
TV (F) ~ T;7(0).
THEOREM 4.2. Let qg be a nonzero real number and let F' be an ele-
ment of S (Li’b[O, T)) given by (2.9) whose associated measure f satisfies

the condition (3.5). Let r > 0 and let q; and g2 be nonzero real numbers
with |gi| > |qol, lg2| > |go| and g1 + g2 # 0. Then

anfrqg 1 anqu _;_1
[ mwmmaae = [ E, @)
Ca,b[O,T] Ca,b[O,T]

(4.4) anfres
- / T (F)(v/ry)dp(y)

Ca (0,7
where Fy, 4, is given by (3.11).

Proof. Using equations (4.3) and (3.34) with a = 1, 8 = /r, we
obtain that

anfq,
/ F(Vrz +y)du(y) | du(z)

/anfrqz |:
B Ca.,b[O:T] Ca,b[ovT]
anf rq+1qg
rq1+rq
= / N By raayr(2)di(@)

C.,{0,T]

anf a1z

- / W By (@)du(a).

Ca,b[O,T]

By the same argument in equation (4.5) with a = /r, 8 = 1, we have
that

anfrq anf a1q
wo) [ IOE W) = [ P By g @)dua).

Ca 50,7 Co 50,7

Now equation (4.4) follows from equations (4.5) and (4.6). O
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COROLLARY 4.3. Let qo and F be as in Theorem 4.2. Then for
all nonzero real numbers qi and ¢ with |q1| > |qol, |g2] > |go| and

Q1+Q27é0>

anfq2 anfql
(47) / TO (F)(2)duz) = / TO (F)(y)duly).
Ca,b[07T]

COROLLARY 4.4. Let qo and let F be as in Theorem 4.2. Then for
all nonzero real number g with |q| > |qo],

anfq anfq/a
[ e = [ R
(4 8) Ca.b[0,T) Ca.5[0,T)

anfq

= [ Fa(VE)du

Cqa b[0,7)
where F, 4 is given by (3.15).
Proof. The first equality in (4.8) follows by letting » = 1 and q; =
g2 = ¢ in equation (4.4). The second equality follows from Lemma 3.7.00
THEOREM 4.5. Let qo,q1, - ,qn, and let F' be as in Theorem 3.4.
Then for s-a.e. z € Cy [0, T],

T(l)(T(l) (- (Tq(zl)(Tq(ll)(F))) - N(2)

an qn—1

anfa,
(4.9) - / Fyy . 0o (2 + 2)dus(z)
Ca'b[O,T]

= IO (Fyy - 0,)(2)
where Fy, ... 4. is given by equation (3.21) and a, is as in Theorem 3.4.
Proof. Using equations (4.3) and (3.18), we obtain that
quj)(T“) (--~(T(1)(T,§11)(F)))---))(z)

In—1 q2
anfq, anfq,
=/ / Flz+yi+- +yn)du(ys) - dp(yn)
(4.10) C::}O,T] C.,5[0,T]
. Fpy o0 (2 2)du()
Ca,b[0,T]
= Tézi) (Fa1,+g0)(2)
for s-a.e. z € Cy [0, T7. O
Choosing ¢q; = ¢ for j = 1,--- ,n, we obtain the following corollary

to Theorem 4.5.
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COROLLARY 4.6. Let gy and F' be as in Theorem 4.5 and let q be a
nonzero real number with |g| > |qo|. Then for s-a.e. z € Cq,[0,T7,
(4.11)

anfq
IO N = T = [ gy Faale 4 VE(2),
a,biYy
T (TH(TO (F)(=)
(4.12) anf,
=T Faad@ = [ Fraals+VEo)dato),
Cq.,5[0,77

and in general,
TINTD (- (T (F)) ---))(2)

anfq
= T;}L(Fq,~-. )(2) = / E,.. o(2 4+ Vnz)du(z).
C,.,5(0,7]

COROLLARY 4.7. Let qo and F be as in Theorem 4.5 and let q, and

g2 be nonzero real numbers with |q1| > |qo|,|q2| > |qo|, and q1 + g2 # 0.
Then for s-a.e. z € Cy[0,T],

414)  TOTDE))(2) = THw (Fay00)(2) = TO(TD (F))(2)

q1+a2

where Fy, 4, is given by (3.11).
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