A FUBINI THEOREM FOR GENERALIZED ANALYTIC FEYNMAN INTEGRALS AND FOURIER-FEYNMAN TRANSFORMS ON FUNCTION SPACE

Seung Jun Chang and Il Yong Lee

Abstract. In this paper we use a generalized Brownian motion process to define a generalized analytic Feynman integral. We then establish a Fubini theorem for the function space integral and generalized analytic Feynman integral of a functional F belonging to Banach algebra $\mathcal{S}(L^2_{a,b}[0,T])$ and we proceed to obtain several integration formulas. Finally, we use this Fubini theorem to obtain several Feynman integration formulas involving analytic generalized Fourier-Feynman transforms. These results subsume similar known results obtained by Huffman, Skoug and Storvick for the standard Wiener process.

1. Introduction

Let $C_0[0,T]$ denote one-parameter Wiener space; that is the space of real-valued continuous functions $x(t)$ on $[0,T]$ with $x(0) = 0$. The concept of L_1 analytic Fourier-Feynman transform (FFT) was introduced by Brue in [1]. In [2], Cameron and Storvick introduced an L_2 analytic FFT. In [14], Johnson and Skoug developed an L_p analytic FFT theory for $1 \leq p \leq 2$ which extended the results in [1, 2] and gave various relationships between the L_1 and the L_2 theories. In [11, 12], Huffman, Skoug and Storvick established a Fubini theorem for various analytic Wiener and Feynman integrals.

In [3], Cameron and Storvick introduced a Banach algebra \mathcal{S} of functionals on Wiener space which are a kind of stochastic Fourier transform.

Received November 2, 2002.
2000 Mathematics Subject Classification: 28C20, 60J65.
Key words and phrases: generalized Brownian motion process, generalized analytic Feynman integral, generalized analytic Fourier-Feynman transform, Fubini theorem.

The present research was conducted by the research fund of Dankook University in 2002.
of complex Borel measures on $L_2[0, T]$. In [6], Chang and Chung use a
generalized Brownian motion process to define a function space integral.
In [9], Chang and Skoug studied the analytic generalized FFT (GFFT)
on function space.

In this paper we extend the results of [11, 12] to a very general
function space $C_{a,b}[0, T]$ and Banach algebra $S(L_2^{a,b}[0, T])$. Recall that the
Wiener process is free of drift and is stationary in time, while the
stochastic processes considered in this paper are subject to a drift $a(t)$ and
are nonstationary in time.

2. Definitions and preliminaries

Let $D = [0, T]$ and let (Ω, \mathcal{B}, P) be a probability measure space. A
real valued stochastic process Y on (Ω, \mathcal{B}, P) and D is called a
generalized Brownian motion process if $Y(0, \omega) = 0$ almost everywhere and
for $0 = t_0 < t_1 < \cdots < t_n \leq T$, the n-dimensional random vector
$(Y(t_1, \omega), \cdots, Y(t_n, \omega))$ is normally distributed with density function

$$K(\tilde{t}, \tilde{\eta}) = \left((2\pi)^n \prod_{j=1}^{n} (b(t_j) - b(t_{j-1}))\right)^{-1/2}$$

$$\cdot \exp\left\{-\frac{1}{2} \sum_{j=1}^{n} \frac{(\eta_j - a(t_j)) - (\eta_{j-1} - a(t_{j-1}))^2}{b(t_j) - b(t_{j-1})}\right\}$$

(2.1)

where $\tilde{\eta} = (\eta_1, \cdots, \eta_n)$, $\eta_0 = 0$, $\tilde{t} = (t_1, \cdots, t_n)$, $a(t)$ is an absolutely
continuous real-valued function on $[0, T]$ with $a(0) = 0$, $a'(t) \in L^2[0, T]$, and
$b(t)$ is a strictly increasing, continuously differentiable real-valued
function with $b(0) = 0$ and $b'(t) > 0$ for each $t \in [0, T]$.

As explained in [16, pp.18–20], Y induces a probability measure μ on
the measurable space $(\mathbb{R}^D, \mathcal{B}^D)$ where \mathbb{R}^D is the space of all real valued
functions $x(t), t \in D$, and \mathcal{B}^D is the smallest σ-algebra of subsets of \mathbb{R}^D
with respect to which all the coordinate evaluation maps $e_x(x) = x(t)$
defined on \mathbb{R}^D are measurable. The triple $(\mathbb{R}^D, \mathcal{B}^D, \mu)$ is a probability
measure space. This measure space is called the function space induced
by the generalized Brownian motion process Y determined by $a(\cdot)$ and
$b(\cdot)$.

We note that the generalized Brownian motion process Y determined
by $a(\cdot)$ and $b(\cdot)$ is a Gaussian process with mean function $a(t)$ and co-
variance function $r(s, t) = \min\{b(s), b(t)\}$. By theorem 14.2 [16, p.187],
the probability measure μ induced by Y, taking a separable version, is supported by $C_{a,b}[0,T]$ (which is equivalent to the Banach space of continuous functions x on $[0,T]$ with $x(0) = 0$ under the sup norm). Hence $(C_{a,b}[0,T], B(C_{a,b}[0,T]), \mu)$ is the function space induced by Y where $B(C_{a,b}[0,T])$ is the Borel σ-algebra of $C_{a,b}[0,T]$.

A subset B of $C_{a,b}[0,T]$ is said to be scale-invariant measurable provided ρB is $B(C_{a,b}[0,T])$-measurable for all $\rho > 0$, and a scale-invariant measurable set N is said to be scale-invariant null provided $\mu(\rho N) = 0$ for all $\rho > 0$. A property that holds except on a scale-invariant null set to hold scale-invariant almost everywhere (s.a.e.) [4, 10, 15].

Let $L_{a,b}^2[0,T]$ be the Hilbert space of functions on $[0,T]$ which are Lebesgue measurable and square integrable with respect to the Lebesgue Stieltjes measures on $[0,T]$ induced by $a(\cdot)$ and $b(\cdot)$; i.e.,

$$L_{a,b}^2[0,T] = \left\{ v : \int_0^T v^2(s) db(s) < \infty \text{ and } \int_0^T v^2(s) da(s) < \infty \right\}$$

where $|a(t)|$ denotes the total variation of the function a on the interval $[0,t]$.

For $u, v \in L_{a,b}^2[0,T]$, let

$$\langle u, v \rangle_{a,b} = \int_0^T u(t) v(t) d[b(t)] + |a(t)|.$$

Then $(\cdot, \cdot)_{a,b}$ is an inner product on $L_{a,b}^2[0,T]$ and $\|u\|_{a,b} = \sqrt{(u,u)_{a,b}}$ is a norm on $L_{a,b}^2[0,T]$. In particular note that $\|u\|_{a,b} = 0$ if and only if $u(t) = 0$ a.e. on $[0,T]$. Furthermore $(L_{a,b}^2[0,T], \| \cdot \|_{a,b})$ is a separable Hilbert space.

Let $\{\phi_j\}_{j=1}^\infty$ be a complete orthogonal set of real-valued functions of bounded variation on $[0,T]$ such that

$$\langle \phi_j, \phi_k \rangle_{a,b} = \begin{cases} 0, & j \neq k \\ 1, & j = k \end{cases}$$

and for each $v \in L_{a,b}^2[0,T]$, let

$$v_n(t) = \sum_{j=1}^n \langle v, \phi_j \rangle_{a,b} \phi_j(t)$$

(2.4)
for $n = 1, 2, \cdots$. Then for each $v \in L^2_{a,b}[0,T]$, the Paley-Wiener-Zygmund (PWZ) stochastic integral $\langle v, x \rangle$ is defined by the formula

$$\langle v, x \rangle = \lim_{n \to \infty} \int_0^T v_n(t)dx(t)$$

for all $x \in C_{a,b}[0,T]$ for which the limit exists; one can show that for each $v \in L^2_{a,b}[0,T]$, the PWZ stochastic integral $\langle v, x \rangle$ exists for μ-a.e. $x \in C_{a,b}[0,T]$.

We denote the function space integral of a $B(C_{a,b}[0,T])$-measurable functional F by

$$\int_{C_{a,b}[0,T]} F(x) d\mu(x)$$

whenever the integral exists.

We are now ready to state the definition of the generalized analytic Feynman integral.

Definition 2.1. Let \mathbb{C} denote the complex numbers and let $\mathbb{C}_+ = \{ \lambda \in \mathbb{C} : \text{Re}\lambda > 0 \}$. Let $F : C_{a,b}[0,T] \to \mathbb{C}$ be such that the function space integral

$$J(\lambda) = \int_{C_{a,b}[0,T]} F(\lambda^{-1/2} x) d\mu(x)$$

exists for all $\lambda > 0$. If there exists a function $J^*(\lambda)$ analytic in \mathbb{C}_+ such that $J^*(\lambda) = J(\lambda)$ for all $\lambda > 0$, then $J^*(\lambda)$ is defined to be the analytic function space integral of F over $C_{a,b}[0,T]$ with parameter λ, and for $\lambda \in \mathbb{C}_+$ we write

$$\int_{C_{a,b}[0,T]}^{an,\lambda} F(x) d\mu(x) = J^*(\lambda).$$

Let $q \neq 0$ be a real number and let F be a functional such that $\int_{C_{a,b}[0,T]}^{an,\lambda} F(x) d\mu(x)$ exists for all $\lambda \in \mathbb{C}_+$. If the following limit exists, we call it the generalized analytic Feynman integral of F with parameter q and we write

$$\int_{C_{a,b}[0,T]}^{an,t} F(x) d\mu(x) = \lim_{\lambda \to -iq} \int_{C_{a,b}[0,T]}^{an,\lambda} F(x) d\mu(x)$$

where λ approaches $-iq$ through \mathbb{C}_+.

Now, we give the definition of the Banach algebra $S(L^2_{a,b}[0,T])$.
Definition 2.2. Let $M(L^2_{a,b}[0,T])$ be the space of complex-valued, countably additive Borel measures on $L^2_{a,b}[0,T]$. The Banach algebra $S(L^2_{a,b}[0,T])$ consists of those functionals F on $C_{a,b}[0,T]$ expressible in the form

$$F(x) = \int_{L^2_{a,b}[0,T]} \exp\{i\langle v, x \rangle\} df(v)$$

for s.a.e. $x \in C_{a,b}[0,T]$ where the associated measure f is an element of $M(L^2_{a,b}[0,T])$.

Remark 2.3. (i) When $a(t) \equiv 0$ and $b(t) = t$ on $[0,T]$, $S(L^2_{a,b}[0,T])$ reduces to the Banach algebra S introduced by Cameron and Storvick in [3]. For further work on S, see the references referred to in Section 20.1 of [13].

(ii) $M(L^2_{a,b}[0,T])$ is a Banach algebra under the total variation norm where convolution is taken as the multiplication.

(iii) One can show that the correspondence $f \rightarrow F$ is injective, carries convolution into pointwise multiplication and that $S(L^2_{a,b}[0,T])$ is a Banach algebra with norm

$$\|F\| = \|f\| = \int_{L^2_{a,b}[0,T]} |df(v)|.$$

In [3], Cameron and Storvick carry out these arguments in detail for the Banach algebra S.

The following function space integral and generalized analytic Feynman integral formulas are used several times in this paper [5, 9].

$$\int_{C_{a,b}[0,T]} \exp\{i\alpha\langle v, x \rangle\} d\mu(x) = \exp\left\{-\frac{\alpha^2\langle v^2, b' \rangle}{2} + i\alpha\langle v, a' \rangle\right\}$$

for all $\alpha > 0$, and

$$\int_{C_{a,b}[0,T]}^{anf_a} \exp\{i\langle v, x \rangle\} d\mu(x) = \exp\left\{-\frac{i\langle v^2, b' \rangle}{2q} + i\left(\frac{i}{q}\right)^{1/2} \langle v, a' \rangle\right\}$$

for all real $q \neq 0$, $(i/q)^{1/2}$ is always chosen to have positive real part and $v \in L^2_{a,b}[0,T]$ where

$$(v, a') = \int_0^T v(t)a'(t)dt = \int_0^T v(t)da(t)$$

and

$$(v^2, b') = \int_0^T v^2(t)b'(t)dt = \int_0^T v^2(t)db(t).$$
REMARK 2.4. If \(a(t) \equiv 0 \) on \([0, T]\), then for all \(F \in \mathcal{S}(L^2_{a,b}[0, T])\) with associated measure \(f \), the generalized analytic Feynman integral of \(F \) will always exist for all real \(q \neq 0 \) and be given by the formula

\[
\int_{C_{a,b}[0, T]}^\text{anf}_q F(x) d\mu(x) = \int_{L^2_{a,b}[0, T]} \exp\left\{ -\frac{i(v^2, b')}{2q} \right\} df(v).
\]

However for \(a(t) \) as in this section, and proceeding formally using equations (2.9) and (2.11), we see that \(\int_{C_{a,b}[0, T]}^\text{anf}_q F(x) d\mu(x) \) will be given by the formula

\[
\int_{C_{a,b}[0, T]}^\text{anf}_q F(x) d\mu(x) = \int_{L^2_{a,b}[0, T]} \exp\left\{ -\frac{i(v^2, b')}{2q} + i \left(\frac{v}{q} \right)^\frac{1}{2} (v, a') \right\} df(v)
\]

if it exists. But the integral on the right hand-side of (2.15) might not exist if the real part of

\[
\exp\left\{ -\frac{i(v^2, b')}{2q} + i \left(\frac{v}{q} \right)^\frac{1}{2} (v, a') \right\}
\]

is positive. However

\[
\left| \exp\left\{ -\frac{i(v^2, b')}{2q} + i \left(\frac{v}{q} \right)^\frac{1}{2} (v, a') \right\} \right| = \left\{ \begin{array}{ll}
\exp\left\{ -(2q)^{-1/2}(v, a') \right\}, & q > 0 \\
\exp\left\{ -(2q)^{-1/2}(v, a') \right\}, & q < 0
\end{array} \right.
\]

and so the generalized analytic Feynman integral of \(F \) will certainly exist provided the associated measure \(f \) satisfies the condition

\[
\int_{L^2_{a,b}[0, T]} \exp\left\{ |2q|^{-1/2} \int_0^T |v(s)|d|a|(s) \right\} df(v) < \infty.
\]

3. Generalized Feynman integrals

In this section we establish a Fubini theorem for the function space integral and the generalized analytic Feynman integral for a functional \(F \) in a Banach algebra \(\mathcal{S}(L^2_{a,b}[0, T]) \). We also use this Fubini theorem to establish several generalized analytic Feynman integration formulas.

In our first Lemma we obtain a Fubini theorem for function space integrals of a functional \(F \in \mathcal{S}(L^2_{a,b}[0, T]) \).
LEMMA 3.1. Let F be an element of $\mathcal{S}(L^2_{\alpha,\beta}[0,T])$ given by (2.9). Then for all $\alpha, \beta > 0$,

\begin{equation}
\int_{C_{\alpha,\beta}[0,T]} \left[\int_{C_{\alpha,\beta}[0,T]} F(\alpha y + \beta z) d\mu(y) \right] d\mu(z)
= \int_{C_{\alpha,\beta}[0,T]} \left[\int_{C_{\alpha,\beta}[0,T]} F(\alpha y + \beta z) d\mu(z) \right] d\mu(y).
\end{equation}

In addition, both expressions in (3.1) are given by the expression

\begin{equation}
\int_{L^2_{\alpha,\beta}[0,T]} \exp \left\{ -\frac{1}{2} (\alpha^2 + \beta^2)(v^2, b') + i(\alpha + \beta)(v, a') \right\} df(v).
\end{equation}

Proof. Since F is an element of $\mathcal{S}(L^2_{\alpha,\beta}[0,T])$, we have

\begin{equation}
\int_{C_{\alpha,\beta}[0,T]} |F(\rho x)| d\mu(x) < \infty
\end{equation}

for each $\rho > 0$. Hence by the usual Fubini theorem, we have the equation (3.1) above. Further, by using (2.10), we have for all $\alpha, \beta > 0$,

\begin{equation}
\int_{C_{\alpha,\beta}[0,T]} \left[\int_{C_{\alpha,\beta}[0,T]} F(\alpha y + \beta z) d\mu(y) \right] d\mu(z)
= \int_{C_{\alpha,\beta}[0,T]} \left[\int_{C_{\alpha,\beta}[0,T]} \int_{L^2_{\alpha,\beta}[0,T]} \exp\{i \langle v, \alpha y \rangle + i \langle v, \beta z \rangle\} df(v) d\mu(y) \right] d\mu(z)
= \int_{L^2_{\alpha,\beta}[0,T]} \int_{C_{\alpha,\beta}[0,T]} \exp \{ i \langle v, \beta z \rangle \}
\cdot \left[\int_{C_{\alpha,\beta}[0,T]} \exp \{ i \langle v, \alpha y \rangle \} d\mu(y) \right] d\mu(z) df(v)
= \int_{L^2_{\alpha,\beta}[0,T]} \exp \left\{ -\frac{\alpha^2}{2} (v^2, b') + i\alpha (v, a') \right\}
\cdot \left[\int_{C_{\alpha,\beta}[0,T]} \exp \{ i \langle v, \beta z \rangle \} d\mu(z) \right] df(v)
= \int_{L^2_{\alpha,\beta}[0,T]} \exp \left\{ -\frac{1}{2} (\alpha^2 + \beta^2)(v^2, b') + i(\alpha + \beta)(v, a') \right\} df(v).
\end{equation}
THEOREM 3.2. Let \(q_0 \) be a nonzero real number and let \(F \) be an element of \(\mathcal{S}(L^2_{a,s}[0,T]) \) given by (2.9) whose associated measure \(f \) satisfies the condition

\[
\int_{L^2_{a,s}[0,T]} \exp\left\{ 4|2q_0|^{-1/2} \int_0^T |v(s)|^2 |d|a|(s)\right\} |df(v)| < \infty.
\]

Then for all nonzero real numbers \(q_1 \) and \(q_2 \) with \(|q_1| \geq |q_0|, |q_2| \geq |q_0| \) and \(q_1 + q_2 \neq 0 \),

\[
\int_{C_{a,s}[0,T]} \left[\int_{C_{a,s}[0,T]} F(y + z) d\mu(y) \right] d\mu(z)
\]

\[
= \int_{C_{a,s}[0,T]} \left[\int_{C_{a,s}[0,T]} F_{q_1,q_2}(x) d\mu(x) \right] d\mu(y)
\]

\[
= \int_{C_{a,s}[0,T]} \left[\int_{C_{a,s}[0,T]} F(y + z) d\mu(z) \right] d\mu(y)
\]

where \(F_{q_1,q_2} \) is given by (3.11) below.

Also, all expressions in (3.6) below are given by the expression

\[
\int_{L^2_{a,s}[0,T]} \exp\left\{ -\frac{i}{2} \left(\frac{1}{q_1} + \frac{1}{q_2} \right) (v^2, b') + i \left(\left(\frac{i}{q_1} \right)^{\frac{1}{2}} + \left(\frac{i}{q_2} \right)^{\frac{1}{2}} \right) (v, a') \right\} df(v).
\]

Proof. Using the usual Fubini theorem, (2.15), and (2.10), we have that for all \(\lambda_2 > 0 \),

\[
\int_{C_{a,s}[0,T]} \left[\int_{C_{a,s}[0,T]} F(y + \lambda_2^{-1/2} z) d\mu(y) \right] d\mu(z)
\]

\[
= \int_{L^2_{a,s}[0,T]} \left[\int_{C_{a,s}[0,T]} \exp \{ i\langle v, y \rangle \} d\mu(y) \right] \cdot \exp \{ i\lambda_2^{-1/2} \langle v, z \rangle \} d\mu(z) df(v)
\]

\[
= \int_{L^2_{a,s}[0,T]} \exp\left\{ -\frac{i}{2} (v^2, b') + i \left(\left(\frac{i}{q_1} \right)^{\frac{1}{2}} \right) (v, a') \right\}
\]
\[
\int_{C_{a,b}[0,T]} \exp\{i \lambda_2^{-1/2} \langle v, z \rangle\} d\mu(z) d\nu(v)
\]
\[
= \int_{L_{a,b}^2[0,T]} \exp\left\{ -\frac{i (v^2, b')}{2q_1} + i \left(\frac{i}{q_1} \right)^{1/2} (v, a') - \frac{(v^2, b')}{2\lambda_2} + i \lambda_2^{-1/2} (v, a') \right\} d\mu(v).
\]

But the last expression above is an analytic function of \(\mathbb{C}_+ \) and is a continuous function of \(\lambda_2 \) in \(\hat{\mathbb{C}}_+ = \{ \lambda \in \mathbb{C} : \lambda \neq 0 \text{ and } \text{Re}\lambda \geq 0 \} \), and so setting \(\lambda_2 = -iq_2 \) yields (3.7).

Also, using (2.15) with \(q \) replaced with \(q_2 \), we obtain that for all \(\lambda_1 > 0 \)

\[
\int_{C_{a,b}[0,T]} \left[\int_{C_{a,b}[0,T]} F(\lambda_1^{-1/2} y + z) d\mu(z) \right] d\mu(y)
\]
\[
= \int_{L_{a,b}^2[0,T]} \exp\left\{ -\frac{(v^2, b')}{2\lambda_1} + i \lambda_1^{-1/2} (v, a') - \frac{i (v^2, b')}{2q_2} + i \left(\frac{i}{q_2} \right)^{1/2} (v, a') \right\} d\mu(v).
\]

By the same argument with \(\lambda_1 = -iq_1 \), we have the expression (3.7) above. Moreover, the expression (3.7) is equal to

\[
\int_{L_{a,b}^2[0,T]} \exp\left\{ -\frac{i}{2} \left(\frac{1}{q_1} + \frac{1}{q_2} \right) (v^2, b') + i \left(\frac{i}{q_1} + \frac{i}{q_2} \right)^{1/2} (v, a') \right\} d\mu(q_1, q_2)(v)
\]
\[
= \int_{C_{a,b}[0,T]} \left[\int_{C_{a,b}[0,T]} \exp\left\{ -\frac{i}{2} \left(\frac{q_1 q_2}{q_1 + q_2} \right) (v^2, b') + i \left(\frac{i}{q_1 + q_2} \right)^{1/2} (v, a') \right\} d\mu(q_1, q_2)(v) \right] d\mu(x)
\]
where

\[
F_{q_1, q_2}(x) = \int_{L_{a,b}^2[0,T]} \exp\{i \langle v, x \rangle\} d\mu(q_1, q_2)(v)
\]
and
\[f_{q_1,q_2}(E) = \int_E \exp \left\{ i \left(\left(\frac{i}{q_1} \right)^{\frac{1}{2}} + \left(\frac{i}{q_2} \right)^{\frac{1}{2}} \right) (v, a') - i \left(\frac{i}{q_1} + \frac{i}{q_2} \right)^{\frac{1}{2}} (v, a') \right\} df(v) \]
for every \(E \in \mathcal{B}(L^{2}_{a,b}[0,T]) \). Finally, we have that
\[\| f_{q_1,q_2} \| = \int_{L^{2}_{a,b}[0,T]} | df_{q_1,q_2} (v) | \]
\[\leq \int_{L^{2}_{a,b}[0,T]} \exp \left\{ |2q_1|^{-1/2} \int_0^T |v(s)|d|a|(s)\right\} \]
\[\cdot \exp \left\{ |2q_2|^{-1/2} \int_0^T |v(s)|d|a|(s)\right\} \]
\[\cdot \exp \left\{ \left| \frac{2q_1q_2}{q_1 + q_2} \right|^{-1/2} \int_0^T |v(s)|d|a|(s)\right\} \]
\[\leq \int_{L^{2}_{a,b}[0,T]} \exp \left\{ 4|q_0|^{-1/2} \int_0^T |v(s)|d|a|(s)\right\} | df(v) | < \infty. \]

Hence \(f_{q_1,q_2} \) is an element of \(M(L^{2}_{a,b}[0,T]) \) and so \(F_{q_1,q_2} \) is in \(S(L^{2}_{a,b}[0,T]) \).
Thus we have the desired results. \(\Box \)

Corollary 3.3. Let \(q_0 \) and \(F \) be as in Theorem 3.2. Then for all real \(q \neq 0 \) with \(|q| \geq |q_0| \),
\[\int_{C_{a,b}[0,T]}^{\text{an} f_{q_2}} \left[\int_{C_{a,b}[0,T]}^{\text{an} f_{q_2}} F(y + z) d\mu(y) \right] d\mu(z) = \int_{C_{a,b}[0,T]}^{\text{an} f_{q_2}/2} F_{q,q}(x) d\mu(x) \]
where
\[F_{q,q}(x) = \int_{L^{2}_{a,b}[0,T]} \exp \left\{ i \langle v, x \rangle \right\} df_{q,q} (v) \]
and
\[f_{q,q}(E) = \int_E \exp \left\{ 2i \left(\frac{1}{q} \right)^{\frac{1}{2}} (v, a') - i \left(\frac{2i}{q} \right)^{\frac{1}{2}} (v, a') \right\} df(v) \]
for every \(E \in \mathcal{B}(L^{2}_{a,b}[0,T]) \).
A Fubini theorem for generalized analytic Feynman integrals

Theorem 3.4. Let q_0 be a nonzero real number and let F be an element of $S(L^2_a([0,T]))$ given by (2.9). Let q_1, \cdots, q_n-1 and q_n be nonzero real numbers satisfying the following:

i) $|q_j| \geq |q_0|$ for all $j = 1, \cdots, n$;

ii) for all $j, l = 1, \cdots, n$, $q_j + q_l \neq 0$.

iii) for all $k = 2, \cdots, n$, $\sum_{j=1}^{k} \frac{q_{k-j}}{q_j} \neq 0$.

Suppose that the associated measure f of F satisfies the condition

$$
(3.17) \quad \int_{L^2_a([0,T])} \exp \left\{ 2n|2q_0|^{-1/2} \int_0^T |v(s)|d[a](s) \right\} |df(v)| < \infty
$$

for $n = 1, 2, \cdots$, then

$$
(3.18) \quad \int_{C_a[0,T]}^{anf_{q_n}} \int_{C_a[0,T]}^{anf_{q_1}} \cdots F(y_1 + \cdots + y_n)d\mu(y_1) \cdots d\mu(y_n)
$$

where $\alpha_n = \frac{\sum_{j=1}^{n} \frac{q_{k-j}}{q_j}}{\sum_{j=1}^{n} \frac{q_1}{q_j}}$ and F_{q_1, \cdots, q_n} is given by equation (3.21) below.

In addition, both expressions in (3.18) are given by the expression

$$
(3.19) \quad \int_{L^2_a([0,T])} \exp \left\{ \frac{i}{2} \sum_{j=1}^{n} \frac{1}{q_j} (v^2, b') + i \sum_{j=1}^{n} \left(\frac{i}{q_j} \right)^{\frac{1}{2}} (v, a') \right\} |df(v)|.
$$

Proof. Using equation (3.6) repeatedly, we obtain that

$$
(3.20) \quad \int_{C_a[0,T]}^{anf_{q_n}} \int_{C_a[0,T]}^{anf_{q_1}} \cdots F(y_1 + \cdots + y_n)d\mu(y_1) \cdots d\mu(y_n)
= \int_{C_a[0,T]}^{anf_{q_n}} \int_{C_a[0,T]}^{anf_{q_3}} \cdots \int_{C_a[0,T]}^{anf_{q_{1+q_2}}} F_{q_1, q_2}(z_1 + y_3 + \cdots + y_n)d\mu(z_1)d\mu(y_3) \cdots d\mu(y_n)
$$
\[
\begin{align*}
&= \int_{C_{a,b}[0,T]}^{\infty} \cdots \int_{C_{a,b}[0,T]}^{\infty} f_{q_1, \cdots, q_n}(s_2 + y_4 + \cdots + y_n) \\
&= \cdots \\
&= \int_{C_{a,b}[0,T]}^{\infty} F_{q_1, \cdots, q_n}(x) d\mu(x)
\end{align*}
\]

where

\begin{equation}
F_{q_1, \cdots, q_n}(x) = \int_{L^2_{a,b}[0,T]} \exp\{i(v, x)\} df_{q_1, \cdots, q_n}(v)
\end{equation}

and

\begin{equation}
F_{q_1, \cdots, q_n}(E) = \int_E \exp\left\{i \left(\sum_{j=1}^{n} \left(\frac{i}{q_j} \right) \left(v, a' \right) - \left(\sum_{j=1}^{n} \frac{i}{q_j} \right) \left(v, a' \right) \right) \right\} df(v)
\end{equation}

for every \(E \in B(L^2_{a,b}[0,T]) \). Finally, we have that

\begin{equation}
\|f_{q_1, \cdots, q_n}\| = \int_{L^2_{a,b}[0,T]} |df_{q_1, \cdots, q_n}(v)|
\end{equation}

\begin{align*}
&\leq \int_{L^2_{a,b}[0,T]} \exp\left\{ \sum_{j=1}^{n} |2q_j|^{-1/2} \int_0^T |v(s)| |d|a|(s)| \right\} \\
&\quad \cdot \exp\left\{ |2\alpha_n|^{-1/2} \int_0^T |v(s)| |d|a|(s)| \right\} |df(v)| \\
&\leq \int_{L^2_{a,b}[0,T]} \exp\left\{ 2 \sum_{j=1}^{n} |2q_j|^{-1/2} \int_0^T |v(s)| |d|a|(s)| \right\} |df(v)| \\
&\leq \int_{L^2_{a,b}[0,T]} \exp\left\{ 2n |2q_0|^{-1/2} \int_0^T |v(s)| |d|a|(s)| \right\} |df(v)| < \infty.
\end{align*}

Hence \(f_{q_1, \cdots, q_n} \) is an element of \(M(L^2_{a,b}[0,T]) \) and so \(F_{q_1, \cdots, q_n} \) is in \(S(L^2_{a,b}[0,T]) \). Thus we have the desired results.

Choosing \(q_j = q \) for \(j = 1, \cdots, n \), we obtain the following corollary to Theorem 3.4.
COROLLARY 3.5. Let q_0 be a nonzero real number and let F be an element of $S(L^2_{a,b}[0,T])$ given by (2.9) whose associated measure f satisfies the condition

$$\int_{L^2_{a,b}[0,T]} \exp\left\{2n|2q_0|^{-1/2}\int_0^T |v(s)|d|a|(s)\right\} |df(v)| < \infty$$

for $n = 1, 2, \ldots$. Then for all real q with $|q| \geq |q_0|$,

$$\int_{C_{a,b}[0,T]} \cdots \int_{C_{a,b}[0,T]} F(y_1 + \cdots + y_n) d\mu(y_1) \cdots d\mu(y_n)$$

$$= \int_{C_{a,b}[0,T]} F_{q_1,\ldots,q_n}(x) d\mu(x)$$

where

$$F_{q_1,\ldots,q_n}(x) = \int_{L^2_{a,b}[0,T]} \exp\{i\langle v, x \rangle\} df_{q_1,\ldots,q_n}(v)$$

and

$$f_{q_1,\ldots,q_n}(E) = \int_E \exp\left\{\frac{n}{2}\left(\frac{v}{q}\right)^{\frac{1}{2}}(v, a') - i\left(\frac{in}{q}\right)^{\frac{1}{2}}(v, a')\right\} df(v)$$

for every $E \in \mathcal{B}(L^2_{a,b}[0,T])$.

REMARK 3.6. Note that each of the iterated integrals in equation (3.18) above can also be expressed in $(n! - 1)$ other similar ways; for example, all of the expressions in (3.18), also equal the expression

$$\int_{C_{a,b}[0,T]} \cdots \int_{C_{a,b}[0,T]} F_{q_1,\ldots,q_n}(y_1 + x) d\mu(y_1) d\mu(x)$$

where

$$F_{q_1,\ldots,q_n}(x) = \int_{L^2_{a,b}[0,T]} \exp\{i\langle v, x \rangle\} df_{q_1,\ldots,q_n}(v)$$

and

$$f_{q_1,\ldots,q_n}(E) = \int_E \exp\left\{\frac{n}{2}\left(\frac{v}{q_j}\right)^{\frac{1}{2}}(v, a') - i\left(\frac{n}{q_j}\right)^{\frac{1}{2}}(v, a')\right\} df(v)$$

for every $E \in \mathcal{B}(L^2_{a,b}[0,T])$.
Lemma 3.7. Let q_0 be a nonzero real number and let F be an element of $S(L^2_{a,b}[0,T])$ given by (2.9) whose associated measure f satisfies the condition (2.18) with q replaced with q_0. Then for all nonzero real number q and for all $\alpha > 0$ with $|\alpha q| \geq |q_0|$,

\[
\int_{C_{a,b}[0,T]}^{\infty} F(x) d\mu(x) = \int_{C_{a,b}[0,T]}^{\infty} F\left(\frac{x}{\sqrt{\alpha}}\right) d\mu(x).
\]

\[
\text{Proof.} \text{ By using (2.15), we see that}
\]

\[
\int_{C_{a,b}[0,T]}^{\infty} F(x) d\mu(x)
\]

\[
= \int_{L^2_{a,b}[0,T]} \exp\left\{ -\frac{i(v^2, b')}{2\alpha q} + i\left(\frac{i}{\alpha q}\right)^{\frac{1}{2}} (v, a') \right\} df(v)
\]

\[
= \int_{L^2_{a,b}[0,T]} \exp\left\{ -\frac{i}{2q} (v', a') + i\left(\frac{i}{q}\right)^{\frac{1}{2}} (v, a') \right\} df(v)
\]

\[
= \int_{C_{a,b}[0,T]}^{\infty} F\left(\frac{x}{\sqrt{\alpha}}\right) d\mu(x).
\]

The generalized analytic Feynman integral in equation (3.32) exists because

\[
\int_{L^2_{a,b}[0,T]} \left| \exp\left\{ -\frac{i}{2\alpha q} (v^2, b') + i\left(\frac{i}{\alpha q}\right)^{\frac{1}{2}} (v, a') \right\} \right| df(v)
\]

\[
\leq \int_{L^2_{a,b}[0,T]} \left| 2\alpha q \right|^{-1/2} \left| \int_0^T |v(s) d|a(s) \right| df(v)
\]

\[
\leq \int_{L^2_{a,b}[0,T]} \left| 2q_0 \right|^{-1/2} \left| \int_0^T |v(s) d|a(s) \right| df(v) < \infty.
\]

Hence we have the desired result. \(\square\)

Theorem 3.8. Let q_0 be a nonzero real number and let F be an element of $S(L^2_{a,b}[0,T])$ given by (2.9) whose associated measure f satisfies the condition (3.5). Let $\alpha, \beta > 0$ and let q_1 and q_2 be nonzero real
numbers with $|q_1|/\alpha^2 \geq |q_0|$, $|q_2|/\beta^2 \geq |q_0|$ and $\beta q_1 + \alpha^2 q_2 \neq 0$. Then

\begin{equation}
\int_{C_{a,b}[0,T]}^{anf_{q_2}} \left[\int_{C_{a,b}[0,T]}^{anf_{q_1}} F(\alpha y + \beta z) d\mu(y) \right] d\mu(z)
= \int_{C_{a,b}[0,T]}^{anf_{q_1, q_2}} \frac{F_{q_1, \alpha^2, q_2/\beta^2}(x)}{\beta q_1 + \alpha^2 q_2} d\mu(x)
\end{equation}

where $F_{q_1, \alpha^2, q_2/\beta^2}$ is given by (3.37) below.

Also, both expressions in (3.34) are given by the expression

\begin{equation}
\int_{L_{a,b}^2[0,T]} \exp \left\{ -\frac{i}{2} \left(\frac{\alpha^2}{q_1} + \frac{\beta^2}{q_2} \right) \langle v^2, b' \rangle + i \left(\alpha \left(i \frac{1}{q_1} \right) + \beta \left(i \frac{1}{q_2} \right) \right) \langle v, a' \rangle \right\} df(v).
\end{equation}

Proof. By using (3.31) and (3.6), we see that

\begin{align}
\int_{C_{a,b}[0,T]}^{anf_{q_2}} \left[\int_{C_{a,b}[0,T]}^{anf_{q_1}} F(\alpha y + \beta z) d\mu(y) \right] d\mu(z)
&= \int_{C_{a,b}[0,T]}^{anf_{q_2}} \left[\int_{C_{a,b}[0,T]}^{anf_{q_1, \alpha^2}} F(y + \beta z) d\mu(y) \right] d\mu(z)
&= \int_{C_{a,b}[0,T]}^{anf_{q_1, \alpha^2}} \left[\int_{C_{a,b}[0,T]}^{anf_{q_2}} F(y + \beta z) d\mu(z) \right] d\mu(y)
&= \int_{C_{a,b}[0,T]}^{anf_{q_1, \alpha^2}} \left[\int_{C_{a,b}[0,T]}^{anf_{q_2, \beta^2}} F(y + z) d\mu(z) \right] d\mu(y)
&= \int_{C_{a,b}[0,T]}^{anf_{q_1, q_2}} \frac{F_{q_1, \alpha^2, q_2/\beta^2}(x)}{\beta q_1 + \alpha^2 q_2} d\mu(x)
\end{align}

where

\begin{equation}
F_{q_1, \alpha^2, q_2/\beta^2}(x) = \int_{L_{a,b}^2[0,T]} \exp \{ i \langle v, x \rangle \} df_{q_1, \alpha^2, q_2/\beta^2}(v)
\end{equation}

and

\begin{equation}
F_{q_1, \alpha^2, q_2/\beta^2}(E) = \int_{E} \exp \left\{ i \left(\alpha \left(i \frac{1}{q_1} \right) + \beta \left(i \frac{1}{q_2} \right) \right) \langle v, a' \rangle - i \left(i \left(\frac{\beta q_1 + \alpha^2 q_2}{q_1 q_2} \right) \right) \langle v, a' \rangle \right\} df(v)
\end{equation}
for every \(E \in \mathcal{B}(L_{a,b}^2[0,T]) \).

Moreover, we have that

\[
\| f_{q_1/\alpha^2,q_2/\beta^2} \| = \int_{L_{a,b}^2[0,T]} |df_{q_1/\alpha^2,q_2/\beta^2}(v)| \\
\leq \int_{L_{a,b}^2[0,T]} \exp \left\{ \left| \frac{2q_1q_2}{\beta^2q_1 + \alpha^2q_2} \right|^{-\frac{1}{2}} \int_0^T |v(s)|d|a|(s) \right\} \\
\cdot \exp \left\{ |2q_1/\alpha^2|^{-\frac{1}{2}} \int_0^T |v(s)|d|a|(s) \right\} \\
\cdot \exp \left\{ |2q_2/\beta^2|^{-\frac{1}{2}} \int_0^T |v(s)|d|a|(s) \right\} |df(v)| \\
\leq \int_{L_{a,b}^2[0,T]} \exp \left\{ 4|2q_0|^{-\frac{1}{2}} \int_0^T |v(s)|d|a|(s) \right\} |df(v)| < \infty.
\]

(3.39)

Hence \(f_{q_1/\alpha^2,q_2/\beta^2} \) is an element of \(M(L_{a,b}^2[0,T]) \) and so \(F_{q_1/\alpha^2,q_2/\beta^2} \) is in \(S(L_{a,b}^2[0,T]) \). Thus we have the desired results.

4. Generalized Fourier-Feynman transforms

In this section, we will establish a Fubini theorem for analytic GFFT for functional \(F \in S(L_{a,b}^2[0,T]) \). Then, as corollaries we will obtain several Feynman integration formulas involving analytic GFFT. For simplicity, we restrict our discussion to the case \(p = 1 \); however most of our results hold for all \(p \in [1,2] \).

We state the definition of the analytic GFFT [7, 9].

Definition 4.1. For \(\lambda \in \mathbb{C}_+ \) and \(y \in C_{a,b}[0,T] \), let

\[
(4.1) \quad T_\lambda(F)(y) = \int_{C_{a,b}[0,T]}^{a\lambda} F(y + x)d\mu(x).
\]

Then for \(q \in \mathbb{R} - \{0\} \), the \(L_1 \) analytic GFFT, \(T_{q}^{(1)}(F) \) of \(F \), is defined by the formula \((\lambda \in \mathbb{C}_+) \)

\[
(4.2) \quad T_{q}^{(1)}(F)(y) = \lim_{\lambda \to -iq} T_\lambda(F)(y)
\]
for s.a.e. $y \in C_{a,b}[0,T]$ whenever the limit exists. That is to say,

$$
(4.3) \quad T_t^{(1)}(F)(y) = \int_{C_{a,b}[0,T]} F(y + x) d\mu(x)
$$

for s.a.e. $y \in C_{a,b}[0,T]$.

We note that if $T_t^{(1)}(F)$ exists and if $F \approx G$, then $T_t^{(1)}(G)$ exists and $T_t^{(1)}(F) \approx T_t^{(1)}(G)$.

Theorem 4.2. Let q_0 be a nonzero real number and let F be an element of $S(L^2_{a,b}(0,T))$ given by (2.9) whose associated measure f satisfies the condition (3.5). Let $r > 0$ and let q_1 and q_2 be nonzero real numbers with $|q_1| > |q_0|$, $|q_2| > |q_0|$ and $q_1 + q_2 \neq 0$. Then

$$
(4.4) \quad \int_{C_{a,b}[0,T]} T_{q_1}^{(1)}(F)(\sqrt{r}z) d\mu(z) = \int_{C_{a,b}[0,T]} \int_{C_{a,b}[0,T]} F_{q_1,q_2}(x) d\mu(x)
$$

$$
= \int_{C_{a,b}[0,T]} T_{q_2}^{(1)}(F)(\sqrt{r}y) d\mu(y)
$$

where F_{q_1,q_2} is given by (3.11).

Proof. Using equations (4.3) and (3.34) with $\alpha = 1$, $\beta = \sqrt{r}$, we obtain that

$$
(4.5) \quad \int_{C_{a,b}[0,T]} T_{q_1}^{(1)}(F)(\sqrt{r}z) d\mu(z)
$$

$$
= \int_{C_{a,b}[0,T]} \left[\int_{C_{a,b}[0,T]} F(\sqrt{r}z + y) d\mu(y) \right] d\mu(z)
$$

$$
= \int_{C_{a,b}[0,T]} \int_{C_{a,b}[0,T]} F_{q_1,q_2}(x) d\mu(x)
$$

$$
= \int_{C_{a,b}[0,T]} F_{q_1,q_2}(x) d\mu(x).
$$

By the same argument in equation (4.5) with $\alpha = \sqrt{r}$, $\beta = 1$, we have that

$$
(4.6) \quad \int_{C_{a,b}[0,T]} T_{q_2}^{(1)}(F)(\sqrt{r}y) d\mu(y) = \int_{C_{a,b}[0,T]} \int_{C_{a,b}[0,T]} F_{q_1,q_2}(x) d\mu(x).
$$

Now equation (4.4) follows from equations (4.5) and (4.6). \qed
COROLLARY 4.3. Let \(q_0 \) and \(F \) be as in Theorem 4.2. Then for all nonzero real numbers \(q_1 \) and \(q_2 \) with \(|q_1| > |q_0|, |q_2| > |q_0| \) and \(q_1 + q_2 \neq 0 \),

\[
\int_{C_{a,b}[0,T]}^{anf_{q_2}} T_{q_1}(F)(z)d\mu(z) = \int_{C_{a,b}[0,T]}^{anf_{q_1}} T_{q_2}(F)(y)d\mu(y).
\]

COROLLARY 4.4. Let \(q_0 \) and let \(F \) be as in Theorem 4.2. Then for all nonzero real number \(q \) with \(|q| > |q_0| \),

\[
\int_{C_{a,b}[0,T]}^{anf_q} T_{q}^{(1)}(F)(y)d\mu(y) = \int_{C_{a,b}[0,T]}^{anf_{q/2}} F_{q,q}(x)d\mu(x)
\]

\[
= \int_{C_{a,b}[0,T]}^{anf_q} F_{q,q}(\sqrt{2}x)d\mu(x)
\]

where \(F_{q,q} \) is given by (3.15).

Proof. The first equality in (4.8) follows by letting \(r = 1 \) and \(q_1 = q_2 = q \) in equation (4.4). The second equality follows from Lemma 3.7. \(\Box \)

THEOREM 4.5. Let \(q_0, q_1, \cdots, q_n \), and let \(F \) be as in Theorem 3.4. Then for s-a.e. \(z \in C_{a,b}[0,T] \),

\[
T_{q_n}(T_{q_{n-1}}^{(1)}(\cdots(T_{q_2}^{(1)}(T_{q_1}^{(1)}(F))))\cdots))(z)
\]

\[
= \int_{C_{a,b}[0,T]}^{anf_{\alpha_n}} F_{q_1,\cdots,q_n}(z + x)d\mu(x)
\]

\[
= T_{\alpha_n}^{(1)}(F_{q_1,\cdots,q_n})(z)
\]

where \(F_{q_1,\cdots,q_n} \) is given by equation (3.21) and \(\alpha_n \) is as in Theorem 3.4.

Proof. Using equations (4.3) and (3.18), we obtain that

\[
T_{q_n}^{(1)}(T_{q_{n-1}}^{(1)}(\cdots(T_{q_2}^{(1)}(T_{q_1}^{(1)}(F))))\cdots))(z)
\]

\[
= \int_{C_{a,b}[0,T]}^{anf_{\alpha_n}} \cdots \int_{C_{a,b}[0,T]}^{anf_{q_1}} F(z + y_1 + \cdots + y_n)d\mu(y_1)\cdots d\mu(y_n)
\]

\[
= \int_{C_{a,b}[0,T]}^{anf_{\alpha_n}} F_{q_1,\cdots,q_n}(z + x)d\mu(x)
\]

\[
= T_{\alpha_n}^{(1)}(F_{q_1,\cdots,q_n})(z)
\]

for s-a.e. \(z \in C_{a,b}[0,T] \). \(\Box \)

Choosing \(q_j = q \) for \(j = 1, \cdots, n \), we obtain the following corollary to Theorem 4.5.
COROLLARY 4.6. Let \(q_0 \) and \(F \) be as in Theorem 4.5 and let \(q \) be a nonzero real number with \(|q| \geq |q_0| \). Then for s.a.e. \(z \in C_{a,b}[0,T] \),

\[
T_{q}^{(1)}(T_{q}^{(1)}(F))(z) = T_{q/2}^{(1)}(F_{q,q})(z) = \int_{C_{a,b}[0,T]}^{\text{anf}_q} F_{q,q}(z + \sqrt{2}x) d\mu(x),
\]

(4.11)

\[
T_{q}^{(1)}(T_{q}^{(1)}(T_{q}^{(1)}(F)))(z) = T_{q/3}^{(1)}(F_{q,q,q})(z) = \int_{C_{a,b}[0,T]}^{\text{anf}_q} F_{q,q,q}(z + \sqrt{3}x) d\mu(x),
\]

(4.12)

and in general,

\[
T_{q}^{(1)}(T_{q}^{(1)}(\cdots (T_{q}^{(1)}(F)) \cdots))(z) = T_{q/n}^{(1)}(F_{q,...,q})(z) = \int_{C_{a,b}[0,T]}^{\text{anf}_q} F_{q,...,q}(z + \sqrt{n}x) d\mu(x).
\]

(4.13)

COROLLARY 4.7. Let \(q_0 \) and \(F \) be as in Theorem 4.5 and let \(q_1 \) and \(q_2 \) be nonzero real numbers with \(|q_1| \geq |q_0|, |q_2| \geq |q_0| \), and \(q_1 + q_2 \neq 0 \). Then for s.a.e. \(z \in C_{a,b}[0,T] \),

\[
T_{q_2}^{(1)}(T_{q_1}^{(1)}(F))(z) = T_{q_1 + q_2}^{(1)}(F_{q_1,q_2})(z) = T_{q_1}^{(1)}(T_{q_2}^{(1)}(F))(z)
\]

(4.14)

where \(F_{q_1,q_2} \) is given by (3.11).

References

Department of Mathematics, Dankook University, Cheonan 330-714, Korea
E-mail: sejchang@dankook.ac.kr
iylee@dankook.ac.kr