Effect of Ca^{++} and Cu^{++} Removal from Molasses on Yest cell Growth and RNA Accumulation.

당밀로부터 Ca^{++} 및 Cu^{++} 이온 제거가 효모 생육 및 RNA축적에 미치는 영향

  • Published : 2003.09.01

Abstract

When Saccharomyces cerevisiae MTY62, a high-RNA content yeast, was cultivated by fed-batch mode feeding molasses and com steep liquor, the cell density less than 45g-DCW/L and the RNA content less than 140mg/g-cell were obtained, indicating that unknown compounds inhibiting the cell growth and RNA accumulation are contained in the molasses. Therefore, in order to obtain higher levels of cell density and RNA content, $Ca^{++}$, $Cu^{++}$and $K^{+}$ ions in molasses were removed by pretreatments of molasses with various agents such as IonClear BigBead, $Na_2$$HPO_4$, $H_2$$SO_4$, citric acid, $K_2$$HPO_4$, and EDT A. Among them, IonClear BigBead, $Na_2$$HPO_4$, and EDTA gave the highest $Ca^{++}$ removal efficiency of about 60-90%. In the batch culture with pretreated molasses, the cell concentration of 18.6g-DCW/I and RNA concentration of 3127 mg/I, maximum specific growth rate of 0.459$h^{-1}$ , and specific consumption rate of reducing sugar of 1.28g-sugar/g-cell-h were obtained, which are about 10%, 17%,47%, and 36% higher levels, respectively, over the batch culture with untreated molasses.

고함량 RMh 효모인 Saccharomyces cerevisiae MTY62를 당밀과 com steep liquor를 공급하는 유가배양에서, 세포농도는 45g-DCW/L 이하, RNA 함량은 140mg/g-cell 로 얻어졌다. 이는 균체증식과 RMh축적에 당밀 내에 존재하는 저해물질 때문으로 생각되어 이를 제거하기 위해 다양한 당밀 전처리제의 효과를 조사하였다. 당밀로부터 금속이온 제거 효과는 Na2HPO4와 EDTA를 혼합 처리했을 때 $Ca^{++}$ 는 90% 이상 $Cu^{++}$ 는 약 80% 제거하는 결과를 나타내었고, Na2HPO4와 EDTA, IonClear BigBead 등의 3가지를 혼합 처리했을 때는 $Ca^{++}$ , $Cu^{++}$ 둘 다 90% 이상 제거되는 결과를 나타내었다. Na2HPO4+EDTA처리 당밀의 경우세포내 invertase활성을 크게 증가시켰다. 전처리 당밀로 회분배양한 결과, 세포농도는 18.6g-DCW/L, RNA농도는 3127mg/l, 최대비증식속도($\mu_{max}$ )는 0.459 $h^{-1}$ , 환원당 비소모속도(g-sugar/g-cell$.$h)는 1.28로,대조구에 비해 각각 10%, 17%, 47%, 36%로 증가한 값을 보였다.

Keywords

References

  1. Appl. Microbiol Biotechnol. v.38 Fed-batch alcoholic fermentation of sugar cane blackstrap molasses:influence of the feeding rate on yeast yield and productivity de Carvalho,J.C.M.;E.Aquarone;S.Sato;M.L.Brazzach;D.A.Moraes;W.Borzani
  2. J. Microbiol. Biotechnol. v.9 Downstream processing of recombinant hirudin produced by Saccharomyces cerevisiae Chung,B.H.;W.K.Kim;K.J.Rao;C.H.Kim;S.K.Rhee
  3. Methods Enzymol. v.42 $\H{a}$-D-Fructofuranoside fructohydrolase from yeast Goldstein,A;J.O.Lampen https://doi.org/10.1016/0076-6879(75)42159-0
  4. Appl. Biochem. Biotechnol. v.60 Estimation of the optimal concentrations of residual sugar and cell growth rate for a fed-batch culture of Saccharomyces cerevisiae He,R.Q.;C.Y.Li;J.Xu;X.A.Zhao https://doi.org/10.1007/BF02783586
  5. Kor. J. Food Sci. Technol. v.28 Change of yeast growth and its RNA content in fed-batch fermentation Kim,S.Y.;H.S.Nam;H.J.Lee
  6. Kor. J. Appl. Microbiol. Biotechnol. v.29 Fed-batch fermentation of high-content RNA yeast by using molasses medium Kim,J.B.;M.J.Kwon;H.S.Nam;J.H.Kim;S.W.Nam
  7. Kor. J. Microbiol. Biotechnol. v.30 Selection of yeast mutant strain with high RNA content and its high cell-density fed-batch culture Kim,J.B.;M.J.Kwon;H.S.Nam;J.H.Kim;S.W.Nam
  8. J. Ferment. Bioeng. v.79 Characteristics of a newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes Kim,S.J.;K.Ishikawa;M.Hirai;M.J.Shoda https://doi.org/10.1016/0922-338X(95)94755-G
  9. Anal. Biochem. v.2 Measurement of carboxymethyl cellulase activity Miller,G.L.;R.Blum;W.E.Glennon;A.L.Burton
  10. Bioresour. Technol. v.57 Color elimination from molasses wastewater by Aspergillus niger Miranda,M.P.;G.G.Benito;N.S.Cristobal;C.H.Nieto https://doi.org/10.1016/S0960-8524(96)00048-X
  11. Food Technol. v.11 Yeast derived flavors and flavor enhancers and their probable mode of action Nagodawithana,T.
  12. Biotech. Lett. v.15 Secretion and localization of invertase and inulinase in recombinant Saccharomyces cerevisiae Nam,S.W.;K.Yoda;M.Yamasaki https://doi.org/10.1007/BF00129936
  13. Process Biochem. v.33 Pretreatment of beet molasses to increase pullulan production Roukas,T. https://doi.org/10.1016/S0032-9592(98)00048-X
  14. J. Biol. Chem. v.161 Fractionation of cell components Schmidt,G.;S.J.Thanhauser;W.C.Schneider
  15. Methods Enzymol. v.3 Determination of nucleic acids in tissues by pentose analysis Schneider,W.C. https://doi.org/10.1016/S0076-6879(57)03442-4
  16. J. Ferment. Bioeng. v.79 Factors affecting the ethanol productivity of yeast in molasses Takeshige,K.;K.Ouchi https://doi.org/10.1016/0922-338X(95)91260-C
  17. J. Ferment. Bioeng. v.79 Effects of yeast invertase on ethanol production in molasses Takeshige,K.;K.Ouchi https://doi.org/10.1016/0922-338X(95)91274-9
  18. J. Indust. Microbiol. v.16 Growth kinetics of Saccharomyces cerevisiae in batch and fed-batch cultivation using sugarcane molasses and glucose syrup from cassava starch Win,S.S.;A.Impoolsup;A.Noomhorm https://doi.org/10.1007/BF01570071
  19. J. Indust. Microbiol. Biotechnol. v.19 Production of alcohol from sugar beet molasses without heat or filter sterilization Zayed,G. https://doi.org/10.1038/sj.jim.2900413
  20. Enzyme Microb. Technol. v.17 Invertase from Saccharomyces cerevisiae : Reversible inactivation by components of industrial molasses media Zech,M.;H.Gorisch https://doi.org/10.1016/0141-0229(94)00047-U