Miniaturization of Polymerase Chain Reaction

  • Lee, Ji-Youn (School of Chemical Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Kim, Jae-Jeong (School of Chemical Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Park, Tai-Hyun (School of Chemical Engineering and Institute of Chemical Processes, Seoul National University)
  • Published : 2003.07.01

Abstract

Polymerase chain reaction (PCR) is one of the most widely used analytical tool and is an important module that would benefit from being miniaturized and integrated onto diagnostic or analytical chips. There are potentially two different approaches for the miniaturization of the PCR module: chamber-type and flow-type micro-PCR. These miniaturized PCRs have distinct characteristics and advantages. In this article, we review the necessity of micro-PCR, the materials for the chip fabrication, the surface modification, and characteristics of the two types of micro-PCR. The motivation underlying the development of micro-PCR, the advantages and disadvantages of the various materials used in fabrication and the surface modification methods will be discussed. And finally, the precise features of the two different types of micro-PCR will be compared.

Keywords

References

  1. Sci-ence v.230 Enzymatic amplification of β-globin genomic sequences and restric-tion site analysis for diagnosis of sickle cell anemia Saiki,R.K;S.Scharf;F,Faloona;K.B.Mullis;G.T.Horn;H.A.Erlich;N.Arnheim https://doi.org/10.1126/science.2999980
  2. Science v.239 Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase Saiki,R.K;D.H.Gelfand;S.Stoffel;S.J.Scharf;R.Higuchi;G.T.Horn;K.B.Mullis;H.A.Erlich https://doi.org/10.1126/science.2448875
  3. J.Theor.Biol v.188 Theoretical descrip-tion of the polymerase chain reaction Schnell,S;C.Mendoza https://doi.org/10.1006/jtbi.1997.0473
  4. Clin.Chim.Acta v.307 Microchips,microarrays,biochips and nanochips:Personal laboratories for the 21st century Kricka,L.J https://doi.org/10.1016/S0009-8981(01)00451-X
  5. Curr.Opin.Biotechnol v.9 Ad-vances in approaches to DNA-based diagnostics Whitcombe,D;C.R.Newton;S.Little https://doi.org/10.1016/S0958-1669(98)80137-7
  6. Science v.288 Separation of long DNA molecules in a microfabricated entropic trap array Han,J;H.G.Craighead https://doi.org/10.1126/science.288.5468.1026
  7. Proc.Natl.Acad.Sci.USA v.96 A microfabricated device for sizing and sorting DNA molecules Chou,H,-P;C.Spence;A.Scherer;S.Quake https://doi.org/10.1073/pnas.96.1.11
  8. Anal.Chem v.71 Microfabricated porous mem-brane structure for sample concentration and electropho-retic analysis Khandurina,J;S.C.Jacobson;L.C.Waters;R.S.Foote;J.M.Ramsey https://doi.org/10.1021/ac981161c
  9. Anal.Chem v.69 Microchip device for per-forming enzyme assays Hadd,A.G;D.E.Raymond;J.W.halliwell;S.C.Jacobson;J.M.Ramsey https://doi.org/10.1021/ac970192p
  10. Anal.Chem v.73 Electrochenical enzyme immunoassays on micro-chip platforms Wnag,J;A.Ibanesz;M.P.Chatrathi;A.Escarpa https://doi.org/10.1021/ac010808h
  11. Anal.Biochem v.277 PCR amplification and analysis of simple sequence length polymorphisms in mouse DNA using a single microchip device Dunn,W.C;S.C.Jacobson;L.C.Waters;N.Kroutchin-ina;J.Khandurina;R.S.Foote;M.J.Justice;L.J;Stubbs;J.M.Ramsey https://doi.org/10.1006/abio.1999.4397
  12. J.Chromatogr.A v.732 Analysis of ligase chain reaction products amplified in a silicon-glass chip using capillary electrophoresis Cheng,J;M.A.Shoffner;K.R.Mitchelson;L.J.Kricka;P.Wilding https://doi.org/10.1016/0021-9673(95)01257-5
  13. J.Chromatogr.A v.924 Microfabricated capillary array electrophoresis DNA analysis systems Medintz,I.L;B.M.Paegel;R.A.Mathies https://doi.org/10.1016/S0021-9673(01)00852-4
  14. Electrophoresis v.20 Ultra-high throughput ro-tary capillary array electrophoresis scanner for fluorescent DNA sequencing and analysis Scherer,J.R;I.Kheterpal;A.Radhakrichnan;W.Ja Wil-liam;R.A.Mathies https://doi.org/10.1002/(SICI)1522-2683(19990601)20:7<1508::AID-ELPS1508>3.0.CO;2-7
  15. Anal.Chem v.70 Analysis of DNA fragments from conventional and microfabricated PCR devies using delayed extraction MALDI-TOF mass spectrometry Ross,P.L;P.A.Davis;P.Belgrader https://doi.org/10.1021/ac971256z
  16. Rapid Commun.Mass Spectrom v.11 Intergrated multichannerl microchip electrospray ionization mass spectrometry:Analysis of peptides from on-chip tryptic digestion of melittn Xue,Q;Y.M.Dunayevskiy,F.Foret;B.L.Karger https://doi.org/10.1002/(SICI)1097-0231(199708)11:12<1253::AID-RCM17>3.0.CO;2-6
  17. Science v.280 Chemical amplification:continuous-flow PCR on a chip Kopp,M.U;A.J.Mello;A.Manz https://doi.org/10.1126/science.280.5366.1046
  18. Sens.Actuat.A v.71 Silicon microchambers for DNA amplification Daniel,J.H;S.Iqbal;R.B.Millington;D.F.Moore;C.R.Lowe;D.L.Leslie;M.A.Lee;M.J.Pearce https://doi.org/10.1016/S0924-4247(98)00158-7
  19. Trends Biotechnol v.20 Microfabricated de-vices in biotechnology and biochemical processing Chovan,T;A.Guttman https://doi.org/10.1016/S0167-7799(02)01905-4
  20. Anal.Chem v.70 A miniature ana-lytical instrument for nucleic acid based on micro-machined silicon reaction chambers Northrup,M.A;B.Benett;D.Hadley;P.Landre;S.Le-hew;J.Richards;P.Stratton https://doi.org/10.1021/ac970486a
  21. Nucleic Ac-ids Res v.24 Chip PCR.I.Surface passivation of microfabricated silicon-glass chip for PCR Shoffner,M.A;J.Cheng;G.E.Hvichia;L.J.Kricka;P.Wilding https://doi.org/10.1093/nar/24.2.375
  22. Fresenius J.Anal.Chem v.366 Miniaturized total analysis systems for biological analysis Jakeway,S.C;A.J.de Mello;E.L.Russell https://doi.org/10.1007/s002160051548
  23. Topics Curr.Chem v.194 Sample preparation in microstructured devices Cheng,J;L.J.Kricka;E.L.Sheldon;P.Wilding https://doi.org/10.1007/3-540-69544-3_9
  24. Curr.Opin.Biotechnol v.12 Microfabricated reaction and separation systems Krishnan,M;V.Namasivayam;R.Lin;R.Pal;M.A.Burns https://doi.org/10.1016/S0958-1669(00)00166-X
  25. Anal.Biochem v.257 Integrated cell isolation and polymerase chain reaction analysis using silicon mi-crofilter chambers Wilding,P;L.J.Kricka;J.Cheng;G.Hvichia;M.A.Shoffner;P.Fortina https://doi.org/10.1006/abio.1997.2530
  26. Anal.Biochem v.257 Degenerate oligonucleotide primed-polymerase chain re-action and capillary electrophoretic analysis of human DNA on microchip-bases devices Cheng,J;L.C.Waters;P.Fortina;G.Hvichia;S.C.Ja-cobson;J.M.Ramsey;L.J.Kricka;P.Wilding https://doi.org/10.1006/abio.1997.2531
  27. Anal.Chem v.72 Integrated system for rapid PCR-based DNA analysis in microfluidic devices Khandurina,J;T.E.McKnight;S.C.Jacobson;L.C.Waters;R.S.Foote;J.M.Ramsey https://doi.org/10.1021/ac991471a
  28. Sens.Actual.B v.63 Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system Lagally,E.T;P.C.Simpson;R.A.Mathies https://doi.org/10.1016/S0925-4005(00)00350-6
  29. Anal.Chem v.68 Functional integra-tion of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device Wooley,A.T;D.Hadley;P.Landre;A.J.deMello;R.A.Methies;M.A.Northrup https://doi.org/10.1021/ac960718q
  30. Proc.Natl.Acad.Sci.USA v.93 Mi-crofabricated structures for integrated DNA analysis Burns M.A;C.H;Mastrangelocarlos;T.S.Sammaro;F.P.Man;J.R.Webster;B.N.Johnson;B.Foerster;D.Jones;Y.Fields;A.R.Kaiser;D.T.Burke
  31. Elec-trophoresis v.22 Intergration of gene amplification and capillary gel electrophoresis on a PDMS-glass hybrid microchip Hong,J.W;T.fujii;M.Seki;T.Yamamoto;I.Endo https://doi.org/10.1002/1522-2683(200101)22:2<328::AID-ELPS328>3.0.CO;2-C
  32. J.Chromatogr.A v.853 Nanoliter-scale sample preparation methods directly coupled to po-lymethylmethacrylate-based microchips and gel-filled cap-illaries for the analysis of oligonucleotides Soper,S.A;S.M.Ford;Y.Xu;S.Qi;S.McWhorter;S.Lassiter;D.Patterson;R.C.Bruch https://doi.org/10.1016/S0021-9673(99)00651-2
  33. Anal.Chem v.70 Microchip device for cell lysis,multiflex PCR amplification,and electrophoretic sizing Waters,L.C;S.C.Jacobson;N.Kroutchinina;J.Khan-durina;R.S.Foote;J.M.Ramsey https://doi.org/10.1021/ac970642d
  34. Nucleic Acids Res v.28 A miniature integrated divece for automated multistep genetic assays Anderson,R.C;Z.Su;G.J.Bogdan;J.Fenton https://doi.org/10.1093/nar/28.12.e60
  35. Biosens.Bioelectron v.14 A microfluidic cartridge to prepare spores for PCR analysis Belgrader,P;M.Okuzumi;F.Pourahmadi;D.A.Borkholder;M.A.Northrup https://doi.org/10.1016/S0956-5663(99)00060-3
  36. Science v.282 An integrated nanoliter DNA analysis device Burns,M.A;B.N.Johnson;S.N.Brahmasandra;K.Handique;J.R.Webster;M.Krishnam;T.S.Sammarco;P.M.Man;D.Jones;D.Heldsinger;C.H.Mastrangelo;D.T.Burke https://doi.org/10.1126/science.282.5388.484
  37. Nucleic Acids Res v.25 Optimization of the perfomance of the polymerase chain reaction in silicon-based microstructures Taylor,T.B;E.S.Winn-Deen;E.Picozza;T.M.Woudenberg;M.Albin https://doi.org/10.1093/nar/25.15.3164
  38. Anal.Chem v.70 Real-time microchip PCR for detecting single-base differ-ences in viral and human DNA Ibrahim,M.S;R.S.Lofts;P.B.Jahrling;E.A.Henchal;V.W.Weedn;M.A.Northrup;P.Belgrader https://doi.org/10.1021/ac971091u
  39. Sens.Actual.B v.84 A heater-integrated transparent microchan-nel chip for continuous-flow PCR Sun,K;A.Yamaguchi;Y.Ishida;S.Matsuo;H.Mi-sawa https://doi.org/10.1016/S0925-4005(02)00016-3
  40. Electriphoresis v.22 Nonofabrication:Conven-tional and nonconventional methods Chen,Y;A.Pepin https://doi.org/10.1002/1522-2683(200101)22:2<187::AID-ELPS187>3.0.CO;2-0
  41. Sens.Actuat.A v.52 Chip ele-ments for last thermocycling Poser,S;T.Schulz;U.Dillner;V.Baier;J.M.Kohler;D.Schimkat;G.Mayer;A.Seibert
  42. Anal.Chem v.70 Rapid prototyping of microfluidc systems in poly(dinethylsiloxane) Duffy,D.C;J.C.McDonald;O.J.A.Schueller;G.M.Whitesides https://doi.org/10.1021/ac980656z
  43. Electrophoresis v.21 Fabri-cation of microfluidic systems in poly(dimethylsiloxane) McDonald,J.C;D.C.Duffy;J.R.Anderson;D.T.Chiu;H.Wu;O.J.Schueller;G.M.Whitesides https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
  44. Microelectron.Eng v.61;62 PDMS-based microfluidic devices for biomedical applications Fujiii,T
  45. Sens.Actual.B v.82 Temperature analysis of continuous-flow micro-PCR based on FEA Zhang,Q;W.Wang;H.Zhangc;Y.Wang https://doi.org/10.1016/S0925-4005(01)00993-5
  46. Microelectron.Eng v.61;62 A miniaturized cyckic PCR device-modeling and experiments Chou,C.F;R.Changrani;P.Roberts;D.Sadler;J.Bur-don;F.Zenhausern
  47. Sens.Actual.B v.71 Simula-tion and experimental validation of micro polymerase chain reaction chips Lin,Y.-C;C.-C.Yang;M.-Y Huang https://doi.org/10.1016/S0925-4005(00)00595-5
  48. Anal.Chem v.72 A miniaturized DNA amplifier:Its application in traditional chines medicine Lee,T.M.H;Hsing,I-M;A.I.K.Lao;M.C.Carles https://doi.org/10.1021/ac000384b
  49. Biosens.Bioelectron v.16 High-throughput PCR in silicon based micro-chamber array Nagai,H;Y.Murakami;K.Yokoyama;E.Tamiya 2 https://doi.org/10.1016/S0956-5663(01)00248-2
  50. Anal.Chem v.73 Sin-gle-molecule DNA amplification and analysis in an inte-grated microfluidic device Lagally,E.T;I.Medintz;R.A.Mathies https://doi.org/10.1021/ac001026b
  51. Anal.Chem v.70 Infrared-mediated thermocycling for ultrafast polymerase chain re-action amplifying of DNA Giordano,B.C;E.B.Copeland;J.P.Landers https://doi.org/10.1021/ac980452i
  52. Elec-trophoresis v.22 Towards dynamic coating of glass microchip chambers for amplifying DNA via the polymerase chain reaction Giordano,B.C;E.B.Copeland;J.P.Landers https://doi.org/10.1002/1522-2683(200101)22:2<334::AID-ELPS334>3.0.CO;2-O
  53. Rev.Mol.Biotechnol v.82 Flow-through polymerase chain reactions in chip thermocyclers Schneega β,I;J.M.Kohler https://doi.org/10.1016/S1389-0352(01)00033-2
  54. Nucleic Acids Res v.24 Chip PCR Ⅱ.Investigation of dif-ferent PCR amplification systems in microfabricated sili-con-glass chips Cheng,J;M.A.Shoffner;G.E.Hvichia;L,J.Kricka;Peter Wilding https://doi.org/10.1093/nar/24.2.375
  55. Clin.Chem v.44 Rapid pathogen detection using a microchip PCR array instrument Belgrader,P;W.Benett;D.Hadley;G.Long;R.Mariella,Jr;F.Milanovich;S.Nasarabadi;W.Nelson;J.Richards;P.Stratton