Affinity Separations Using Microfabricated Microfluidic Devices: In Situ Photopolymerization and Use in Protein Separations

  • Chen Li (School of Chemical and Biomolecular Engineering, Cornell University) ;
  • Lee, Wen-Chien (Department of Chemical Engineering, National Chung Cheng University) ;
  • Lee, Kelvin H. (School of Chemical and Biomolecular Engineering, Cornell University)
  • Published : 2003.07.01

Abstract

The use of microfabricated microfluidic devices offers significant advantages over current technologies including fast analysis time and small reagent requirements. In the context of proteomic research, the possibility of using affinity-based separations for prefractionation of samples using microfluidic devices has significant potential. We demonstrate the use of microscale devices to achieve affinity separations of proteins using a device fabricated from borosilicate glass wafers. Photolithography and wet etching are used to pattern individual glass wafers and the wafers are fusion bonded at 650$^{\circ}C$ to obtain enclosed channels. A polymer has been successfully polymerized in situ and used either as a frit for packing beads or, when derivatized with Cibacron Blue 3GA, as a separation matrix. Both of these technologies are based on in situ UV photopolymerization of glycidyl methacrylate (GMA) and trimethylolpropane trimethacrylate (TRIM) in channels.

Keywords

References

  1. Trends Biotechno v.19 Proteomics:A technology-driven and a technology-limited discovery science Lee,K.H https://doi.org/10.1016/S0167-7799(01)01639-0
  2. BioTechniques v.32 Review:Multi-dimensional separations for protein/peptide analysis in the post-genomic era Liu,H;D.Lin;J.H.YatesⅢ
  3. Nature v.415 Functional or-ganization of the yeast proteome by systematic analysis of protein complexes Gavin,A.C;M.Bosche;R.Krause;P.Grandi;M.Mar-zioch;A.Bauer;J.Schultz;J.M.Rick;A.M.Michon;C.M.Cruciat;M.Remor;C.Hofert;M.Schelder;M.Bra-jenovic;H.Ruffner;A.Merino;K.Klein;M.Hudak;D.Dickson;T.Rudi;V.Gnau;A.Bauch;S.Bastuck;B.Hu-hse;C.Leutweinl;M.A.Heurtier;R.R.Copley;A.Edel-mann;E.Querfurth;V.Rybin;G.Drewes;M.Raida;T.Bouwmeester;P.Bork;B.Seraphin;B.Kuster;G.Neubauer;G.Superti-Furga https://doi.org/10.1038/415141a
  4. Nature v.415 Systematic identifica-tion of protein complexes in Saccharomyces cerevisiae by mass spectrometry Ho,Y;A.Gruhler;A.Heilbut;G.D.Bader;L.Moore;S.L.Adams;A.Millar;P.Taylor;K.Bennett;K.Boutilier;L.Y.Yang;C.Wolting;I.Donaldson;S.Schandorff;J.Shewnarane;M.Vo;J.Taggart;M.Goudreault;B.Muskat;C.Alfarano;D.Dewar;Z.Lin;K.Michalickova;A.R.Willems;H.Sassi;P.A.Nielsen;K.J.Rasmussen;J.R.Andersen;L.E.Johansen;L.H.Hansen;H.Jespersen;A.Podtelejnikov;E.Nileson;J.Crawford;V.Poulsen;B.D.Sorensen;J.Matthiesen;R.C.Hendrickson;F.Gleeson;T.Pawson;M.F.Moran;D.Durocher;M.Mann;C.W.V.Hogue;D.Figeys;M.Tyers https://doi.org/10.1038/415180a
  5. Nature v.415 Protein complexes take the bait Kumar,A;M.Snyder https://doi.org/10.1038/415123a
  6. Electrophoresis v.21 Identification of two-dimensionally separated human cerebrospinal fluid proteins by N-terminal se-quencing,matrix-assisted laser desorption/ionization-mass spectrometry,nanoliquid chromatography-electros-pray ionization-time of flight-mass spectrometry,and tandem mass spectrometry Raymackers,J;A.Daniels;V.De Brabandere;C.Missi-aen;M.Dauwe;P.Verhaert;E.Vanmechelen;L.Me-heus https://doi.org/10.1002/1522-2683(20000601)21:11<2266::AID-ELPS2266>3.0.CO;2-Z
  7. Anal.Chem v.72 Electroosmosis- and pressure-driven chromatography in chips using continuous beds Ericson,C;J.Holm,T.Ericson;S.Hjerten
  8. Anal.Chem v.68 Micellar electrokinetic chromatography separations and analysis of biological samples on a cyclic planar microstructure Von Heeren,F;E.Verpoorte;A.Manz;W.Thor-mann https://doi.org/10.1021/ac951190c
  9. Anal.Chem v.64 Capillary electrophoresis and sample in-jection system integrated on a planar glass chip Harrison,D.J;A.Manz;Z.H.Fan;H.Ludi;H.M.Widmer https://doi.org/10.1021/ac00041a030
  10. Electrophoresis v.21 Review:Capillary electrophoresis on microchip Dolnik,V;S.Liu;S.Jovanovich https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<41::AID-ELPS41>3.0.CO;2-7
  11. Proc.Natl.Acad.Sci.USA v.96 SDS capillary gel elec-trophoresis of proteins in microfabricated channels Yao,S;D.S.Anex;W.B.Caldwell;D.W.Arnold;K.B.Smith;K.B.Schultz https://doi.org/10.1073/pnas.96.10.5372
  12. Anal.Chem v.73 Protein sizing on a microchip Bousse,L;S.Mouradian,;A.Minalla;H.Yee;K.Williams;R.Dubrow https://doi.org/10.1021/ac0012492
  13. Anal.Chem v.71 Adaptation of capillary isoelectric focusing to microchannels on a glass chip Hofmann,O;D.Che;K.A.Cruichshank;U.P.Muller https://doi.org/10.1021/ac9806660
  14. BioTechnol.Bioeng v.73 Adsorption of avidin on microfabricated surfaces for protein biochip applica-tions Bashir,R;R.Gomez;A.Sarikaya;M.R.Ladisch;J.Sturgis;J.P.Robinson https://doi.org/10.1002/bit.1065
  15. Nat.BioTechnol v.19 Affinity capture of proteins from solution and their dissociation by contact printing Bernard,A;D.Fitzli;P.Sonderegger;E.Delamarche;B.Michel;H.R.Bosshard;H.Biebuyck https://doi.org/10.1038/nbt0901-866
  16. Anal.Chem v.71 Dynamic hybridization on a chip using paramagnetic beads Fan,Z.H;S.Mangru;R.Granzow;P.Heaney;W.Ho;Q.Dong;R.Kumar https://doi.org/10.1021/ac9902190
  17. Anal.Chem v.72 Trapping of bead-based reagents within microfluidic systems:On-chip soild-phase extrac-tion and electrochromatography Oleschuk,R.D;L.L.Shultz-Lockyear;Y.Ning;D.J.Harrison https://doi.org/10.1021/ac990751n
  18. Anal.Chem v.74 Biomolecular recogni-tion on well-characterized beads packed in microfluidic channels Buranda,T;J.Huang;V.H.Perez-Luna;B.Schreyer;L.A.Sklar;G.P.Lopez https://doi.org/10.1021/ac0109624
  19. Rapid Commun.Mass Spectrom v.14 Integration of immobilized trypsin bead beds for protein digestion within a microfluidic chip incorporating capillary electrophoresis separations and an electrospray mass spectrometry interface Wang,C;R.Oleschuk;F.Ouchen,J.Li;P.Thibault;D.J.Harrison https://doi.org/10.1002/1097-0231(20000815)14:15<1377::AID-RCM31>3.0.CO;2-2
  20. Anal.Chem v.74 Electrochromatography in microchips:Reversed-phase separation of peptides and amino acids using photopat-terned rigid polymer monoliths Throckmorton,D.J;T.J.Shepodd;A.Singh https://doi.org/10.1021/ac011077o
  21. Chem.Mater v.9 Moldedmacroporous poly(glycidylmethacrylate-co-trimethylolpropane trimethacrylate) ma-terials with fine controlled porous properties:Preparation of monoliths using photointiated polymerization Vikilund,C;E.Ponten;B.Glad;K.Irgum;P.Horstedt;F.Svec https://doi.org/10.1021/cm9603011
  22. J.Chromatogr v.921 Affinity chromatogra-phy of proteins on non-porous copolymerized particles of styrene,methyl methacrylate and glycidyl methacrylate Chen,C.H;W.C.Lee https://doi.org/10.1016/S0021-9673(01)00712-9
  23. Anal.Chem v.72 Macro-porous photopolymer frits for capillary electrochroma-tography Chen,J.R;M.T.Dulay;R.N.Zare https://doi.org/10.1021/ac9911793