Pancreatin Production by Removal of Lipid from Hog Pancreas using Supercritical Carbon Dioxide with Entrainer

초임계 이산화탄소와 보조용매를 이용한 돼지췌장 지질제거에 의한 판크레아틴의 생산

  • 권혁수 (부경대학교 식품생명공학부) ;
  • 박선영 (부경대학교 식품생명공학부) ;
  • 전병수 (부경대학교 식품생명공학부)
  • Published : 2003.08.01

Abstract

The study of pancreatin extraction was investigated by supercritical fluid process. Using supercritical carbon dioxide extraction with entrainer the purification of pancreatin was possible to remove lipids from Hog pancreas. To observe the optimum conditions different experimental variables were changed as pressure, temperature, flow rate of solvent and 0.25 mm of sample size were evaluated for effective removal of lipids. Ethanol and n-hexane were used as an entrainer with 5 mL/min. Increasing pressure at constant temperature the efficiency of the lipid removal in Hog pancreas was improved and the protein was concentrated without denaturalization, compared that of the control Hog pancreas. The most efficient conditions of lipid elimination were 17 MPa of pressure and 35$^{\circ}C$ of temperature and 0.25 mm of sample size.

본 연구에서는 초임계 이산화탄소와 보조용매를 사용하여 동결 건조된 돼지 췌장에 존재하는 지질을 단백질 효소의 변성 및 구조의 파괴 없이 제거함으로써 고순도 소화효소제를 분리하고자 하였고, 동결 건조된 돼지 췌장 내의 지질 제거 효율은 온도, 압력, 초임계 이산화탄소의 유량, 원료의 입자크기에 의존하였다. 추출온도와 압력이 높은 상태에서 높은 지질 제거효율이 예상되나 45$^{\circ}C$ 이상의 온도에서는 효소의 활성에 영향을 미치므로 추출온도 선택이 요구되었다. 또한 한정된 온도 범위 내에서 지질제거 효율을 크게 하기 위하여 용매의 이동특성을 최대로 증가시키기 위한 최적 압력이 요구되었다. 초임계 이산화탄소를 이용하여 지질을 분리한 후 원료내의 지질함량은 3%(w/w) 이내로 90% 이상의 제거율을 보였으며, 보조용매를 사용했을 경우 사용하지 않았을 때 보다 추출시간은 약 3배 이상 단축되었으나, 사용된 보조용매가 효소의 활성에 영향을 미치므로 보조용매의 선택이 매우 중요하다는 것을 제시하고자 한다.

Keywords

References

  1. Biotechnol. Bioeng. v.58 Selective separation of trypsin from pancreatin using bioaffinity in reverse micellar system composed of a nonionic surfactant Adachi,M.;K.Shibata;I.A.Shio;M.Harada;S.Katoh https://doi.org/10.1002/(SICI)1097-0290(19980620)58:6<649::AID-BIT11>3.0.CO;2-2
  2. Kor. J. Food Sci. Technol. v.22 Effects of food grade porcine pancreatic lipase on the production of short-chain fatty acids and its contribution Kwak,H.S.;J.J.Jeon;J.N.Park
  3. Biotechnol. Prog. v.11 Optimization of rice alpha-amylase production using temperature-sensitive mutants of Saccharomyces cerevisiae for the regulatory system Uchiyama,K.;T.Ohtani;M.Morimoto;S.Shioya;K.Suga;S.Harashima;Y.Oshima
  4. Kor. J. Nutr. v.6 Effects of condiments upon enzyme activity (1)-effects of condiments upon proteinase activity of pancreatin Suh,M.J.
  5. Kor. J. Dairy Sci. v.13 Effect of commercial food grade porcine pancreatic lipase on physical and sensory characteristics in cheddar cheese during ripening periods Kwon,M.K.;E.G.Jang;H.S.Kwak
  6. Kor. J. Food Sci. Technol. v.22 Effect of food grade porcine pancreatic lipase on neutral volatile compound profiles in cheddar cheese Kwak,H.S.;L.J.Jeon;B.S.Chung
  7. J. Food Science v.62 Extraction conditions and moisture content of conola flakes as related to lipid composition of supercritical CO₂extracts Nurhan,T.D.;T.Feral https://doi.org/10.1111/j.1365-2621.1997.tb04389.x
  8. J. Kor. Fish Soc. v.23 Preparation of the hydrolyzate using crab byproduct after water extraction Kim,D.S.;Y.C.Lee;J.K.Koo;Y.M.Kim
  9. Int. J. Biolog. Macromolecules v.25 Physicochemical study on the polysaccharide ulvan from hot water extraction of the macroalga ulva Paradossi,G.;F.Cavalieri;L.Pizzoferrato;A.M.Liquori https://doi.org/10.1016/S0141-8130(99)00049-5
  10. Food Chem. v.52 Applications for supercritical fluid technology in food processing Palmer,M.V.;S.S.T.Ting https://doi.org/10.1016/0308-8146(95)93280-5
  11. J. American Oil Chemists Soc. v.70 Solubility of fish oil fatty acid ethylesters in sub and supercritical carbon dioxide Staby,A.;H.Molleru https://doi.org/10.1007/BF02545324
  12. Proc. Int. Symp. on supercritical fluids v.2 Extraction of caffeine from with supercritical CO₂ Brunner,G.
  13. Extraction of natural products using near-critical solvent King,M.B.;T.R.Bott
  14. Supercritical fluid extraction (principles and practice)(2nd ed.) McHugh,M.A.;V.J.Krukonis
  15. Supercritical fluid extraction and chromatography Concentration of omega-3-fatty acids from fish oil using supercritical carbon dioxide Rizvi,S.S.;R.R.Chao;Y.J.Liaw
  16. J. Phys. Chem. v.34 Solubility of solid and liquid in supercritical carbon dioxide Chrastil,J.
  17. J. American Oil Chemical Society v.66 Deacidification of olive oils by supercritical carbon dioxide Brunetti,L.;A.Daghetta;E.Fedeli;I,Kikic;L.Zanderighi https://doi.org/10.1007/BF02546062
  18. J. Supercritical fluids v.3 Model for dynamic extraction using a supercritical fluid Bartle,K.D.;A.A.Clifford;S.B.Howthorne;J.J.Langenfeld;D.J.Miler;R.A.Robinson https://doi.org/10.1016/0896-8446(90)90039-O
  19. 6th International symposium on supercritical fluids 2003 Enzymatic hydrolysis of sunflower oil in SC CO₂ Habulin,M.;M.Primozic;Z.Knez
  20. Chem. Rev. v.99 Mesiano,A.J.;E.J.Beckman;A.J.Russell https://doi.org/10.1021/cr970040u
  21. Biotech. Bioeng. v.46 Kamat,S.;G.Critchley;E.J.Beckman;A.J.Russell https://doi.org/10.1002/bit.260460614