Purification and Assay of Extracellular Autolysin from Moraxella sp. CK-l

Moraxella sp. CK-1의 세포외 Autolysin의 분리 정제 및 활성도 측정

  • Published : 2003.09.01

Abstract

Moraxella sp. CK-l is known to inhibits the growth of Anabaena cylindrica, a cyanobacterium. It has been documented that the ability of this growth inhibition of Anabaena cylindrica was attributed to extracellular autolysin from Moraxella sp. CK-l. However, it remains to be elucidated identification and characterization of autolysin have yet been elucidated. In this study, we tried to purify and identify autolysin secreted from Moraxella sp. CK-l. Cells were grown in a complex liquid medium (BGC-11) and culture supernatants were collected, followed by ammonium sulfate fractionation. Fractions were further separated with anion exchange column, Mono-Q, in FPLC system and analyzed by SDS/PAGE. The fraction containing high autolysin activity showed a single distinct protein peak in anion column and molecular mass of about 17 kDa in SDS/PAGE. Nterminal amino acid sequencing of the protein was analyzed, of which result showed the homology with some proteases, including extracellular serine protease, Dichelobacter nodosus.

Moraxella sp. CK-1는 남조류 Anabaena cylindrica의 생장을 억제한다고 알려져 있다. Moraxella sp. CK-1의 세포외 autolysin의 분리는 다음과 같은 방법으로 분리를 시도하였다. 흡광도 660 nm에서 0.7~0.8이 되도록 BGC-11세포배양액에서 키우고, 원심분리로 균주인 Moraxella sp. CK-1를 제거한 뒤 세포배양액을 Amicon ultrafiltration으로 농축을 하였다. 농축한 세포배양액을 $(NH_{4})_{2}SO_{4}$ 로 0~20%, 20~40%, 40~60%, 60~80%로 분획하여 단백질을 14,000${\times}$g로 침전 시켰다. 침전된 단백질을 20 mM Tris-HC1, pH 8.0완충용액으로 현탁시킨 뒤, 동일 완충용액을 이용하여 투석을 하였다. $(NH_{4})_{2}SO_{4}$로 분획한 뒤 활성확인을 위해 Anabaena Cylindrica가 도포된 평판배지에서 활성을 확인한 결과, 40~60%, 60~80%에서 활성이 있음을 확인하였다. 이들을 각각 Mono-$Q^{TM}$ HR 5/5 (column volume 1 ml) column을 이용하여 FPLC에서 단백질을 분리하였다. $(NH_{4})_{2}SO_{4}$ 로 분획한 40~60%에서는 major peak 3개, 60~80% 분획에서는 2개의 major peak가 분리되었다. Mono-$Q^{TM}$ HR 5/5 column에서 분리되어 나온 major peak 5개를 투석한 뒤 Anabaena cylindrica lawn에서 활성을 확인하였으나 확인이 되지 않았다. PVDF membrane을 이용하여 transfer하여 40~60% 침전에서 17 kDa의 단백질을 얻어냈다. 이를 N-terminal amino acid sequence를 하여 serine pretense의 계열임을 확인하였다.

Keywords

References

  1. Protein Methods(2nd ed.) Bollag,D.M.;M.D.Rozycki;S.J.Edelstein
  2. Handbook of natural toxins : Marine Toxins and Venoms v.3 Toxins of freshwater algae Carmichael,W.W.
  3. J. Appl. Bacteriol. v.72 Cyanobacteria secondary metabolites the cyanotoxins Carmichael,W.W. https://doi.org/10.1111/j.1365-2672.1992.tb01858.x
  4. Sci, Am. v.270 The toxins of cyanobacteria Carmichael,W.W. https://doi.org/10.1038/scientificamerican0194-64B
  5. Prog. Fish. Cult. v.25 The effects of copper sulfate on Microcystis and zooplankton in ponds Crane,J.H. https://doi.org/10.1577/1548-8659(1963)25[198:TEOCSO]2.0.CO;2
  6. J. Biol. Chem. v.271 Identification, characterization, and cloning of a phosphonate monoester hydrolase from Burkholderia caryophilli PG2982 Dotson,S.B.;C.E.Smith;C.S.Ling;G.F.Barry;G.M.Kishore https://doi.org/10.1074/jbc.271.42.25754
  7. Microbiol. Rev. v.56 Oxigen relations of nitrogen fixation in cyanobacteria Fay,P.
  8. J. Appl. Phycol. v.4 Toxicity of blooms the cyanobacterium Trichodesmium to zooplankton Hawser,S.P.;J.M.O'Neil;M.R.Roman;G.A.Codd https://doi.org/10.1007/BF00003963
  9. Wat. Res. v.23 The effect of water treatment proceses on the removal of hepatotoxins from Microcystis and Oscillatoria cyanobacteria: A laboratory study Himberg,K.;A.M.Keijola;L.Hiisvira;H.Pyysalo;K.Sivonen https://doi.org/10.1016/0043-1354(89)90171-1
  10. Limnlolgy(2nd ed.) Hone,A.J.;C.R.Goldman
  11. Principles and Applications Freshwater Ecolocy Jeffries,M.;D.Mills
  12. World J. Microbiol. Biotechnol. v.10 Cyanobacteria in rece soils Khan,Z.U.M.;Z.U.T.Begum;R.Mandal;M.Z.Hossain https://doi.org/10.1007/BF00414867
  13. Arch. Hydrobiol. v.121 Production and biodegradation of cyanobacterial toxins-a laboratory study Kiviranta,J.;K.Sivonen;K.Lathi;R.Luukkainen;S.I.N.Helsinki
  14. Phycology(1st ed.) Lee,R.E.
  15. Phycology(2nd ed.) Lee,R.E.
  16. Eur. J. Biochem. v.210 Amino acid and DNA sequences of an extracellular basic protease of Dichelobacter nodosus show that it is a member of the subtilisin family of proteases Lilley,G.G.;D.J.Stewart;A.A.Kortt https://doi.org/10.1111/j.1432-1033.1992.tb17385.x
  17. Mol. Biol. Int. v.36 Nucleotide and deduced protein sequence of the extracellular, serine basic protease gene(bprB) form Dichelobacter nodosus strain 305: comparison with the basic protease gene (bprV) from virulent strain 198 Lilley,G.G.;M.C.Riffkin;D.J.Stewart;A.A.Kortt
  18. Hydrobiologia v.304 Do Microcystis aeruginosa toxins accumulate in the food web: a laboratory study Maatta,C.L.;J.Hietala;M.Reinikainen;M.Walls https://doi.org/10.1007/BF02530700
  19. Introduction to Environmental Microbiology Mitchell,R.
  20. Lett. Appl. Microbiol. v.19 Biodegradability and adsorption on lake sediments of cyanobaterial heptotoxins and anatoxin-a Rapala,J.;K.Lahti;K.Sivonen;S.I.Nlemdela https://doi.org/10.1111/j.1472-765X.1994.tb00972.x
  21. Arch. Hydrobiol. v.133 Acute toxin effects of a novel cyanobacterial toxin on the crustaceand Artemia alina and Daphnia pulex Reinikainen,M.;J.Kiviranta;V.Ulvi;M.L.N.Paavola
  22. Aquaculture v.88 Cyanobacteria in fish ponds Reyssac,S.J.;M.Pletikosic https://doi.org/10.1016/0044-8486(90)90315-E
  23. J. Appl. Phycol. v.6 Structure and biosynthesis of toxins from blue-green algae (cyanobacteria) Rinehart,K.L.;M.Namikoshi;B.W.Choi https://doi.org/10.1007/BF02186070
  24. Nature v.415 Genome sequence of the plant pathogen Ralstonia solanacearum Salanoubat,M.;S.Genin;F.Artiguenave;J.Gouzy;S.Mangenot;M.Arlat;A.Billault;P.Brottier;J.C.Camus;L.Cattolico;M.Chandler;N.Choisne;C.Claudel-Renard;S.Cunnac;N.Damange;C.Gaspin;M.Lavie;A.Moisan;C.Robert;W.Saurin;T.Schiex;P.Siguier;P.Thebault;M.Whalen;P.Wincker;M.Levy;J.Weissenbach;C.A.Boucher https://doi.org/10.1038/415497a
  25. Nippon Suisan Gakkaishi v.57 Plaque formation by algicidal Saprospira sp. on a lawn of Chaetoceros ceratosporum Sakata,T.;Y.Fujita;H.Yasumoto https://doi.org/10.2331/suisan.57.1147
  26. Appl. Environ. Microbiol. v.65 Comparison of bacterial community structures in the rhizoplane of tomato plant grown in soils suppressive and conducive towards bacterial wilt Shiomi,Y.;M.Niahiyama;T.Onizuka;T.Marumoto
  27. Advances in Aquatic Mirobiology v.1 Microbial pathoges of cyanophycean blooms Stewart,W.D.P.;M.J.Draft;M.R.Droop(ed.);H.W.Kannasch(ed.)
  28. J. Gen. Appl. Microbiol. v.40 Production of bacteriolytic enzymes during the growth of a marine bacterium Alteromonas sp. No.8-R Takamoto,S.;K.Yamada;Y.Ezura https://doi.org/10.2323/jgam.40.499
  29. Microbiology v.140 A. Ezpression in Escherichia coli of the extracellular basic protease from Dichelobacter nodosus Vaughan P.R.;L.F.Wang;D.J.Stewart;G.G.Lilley;A.Kortt https://doi.org/10.1099/13500872-140-8-2093
  30. Bacteriol. Rev. v.37 Physiology and cytological chemistry of blue-green algae Wolk,C.P.
  31. J. Mol. Biol. v.306 Crystal structure and site-directed mutagenesis studies of N-carbamoyl-D-amino-acid amidohydrolase from Agrobacterium radiobacter reveals a homotetramer and insight into a catalytic cleft Wang,W.C.;W.H.Hsu;F.T.Chien;C.Y.Chen https://doi.org/10.1006/jmbi.2000.4380
  32. J. Phycol. v.28 Fate of the toxic cyclic heptapeptides, the Microcystins, from blooms of Microcystis (Cyanobacteria) in a hypertrophic Iake Watanabe,M.M.;K.Kaya;N.Takamura https://doi.org/10.1111/j.0022-3646.1992.00761.x