배양온도 변화에 따른 Streptomyces viridochromogenes의 지질과 지방산 조성변화

Changes in Lipids- and Fatty Acids Compositions in Response to Growth Temperature of Streptomyces viridochromogenes

  • 김재헌 (단국대학교 미생물학전공) ;
  • 김우상 (단국대학교 미생물학전공)
  • 발행 : 2003.09.01

초록

Streptomyces viridochromogenes 야생형과 기중균사 형성 변이주들의 지질과 지방산의 조성을 배양온도와 배양시간에 따라 조사하였다. Triacylglycerol은 기중균사가 형성되는 경우에만 감소되어 기중균사 형성과 연관되어 있음을 나타내었다. 인지질의 경우에는 배양조건에 따른 특이적 변화를 볼 수 없었으나, 기중균사 형성능이 상실된 변이주 BR2가 $20^{\circ}C$에서 배양되었을 매 phosphatidylethanolamine 조성이 특이하게 높게 나타났다. 그리고 변이주 BR2는$20^{\circ}C$$30^{\circ}C$ 배양 시 다양한 $R_{f}$ 간의 동정되지 않은 아미노지질들을 함유하였다. 모든 균주에서 아미노지질의 일종인 ornithinolipid는 배양시간이 경과되면서 증가되는 경향을 나타내었다. 지방산조성은 온도에 민감하여 배양온도가 높을수록 불포화지방산 함량이 낮아졌다. 기중균사 형성은 직쇄형 포화지방산의 함량 감소를 수반하였으며, 기중균사 생성능이 우수한 변이주 M13은 배양초기의 직쇄형 포화지방산 함량이 가장 높았다. 변이주 BR2는 iso형 홀수탄소 지방산의 함량이 특이적으로 높았다.

The wild type and two morphological variants of Streptomyces viridochromogenes were studied for their lipidand fatty acid compositions at different incubation temperatures. It showed that a decrease in triacylglycerol content was closely linked to the aerial mycelium formation. Phospholipids showed no characteristic changes, except that the contents of phosphatidylethanolamine were clearly high for aerial mycelium deficient strain BR2 grown at $20^{\circ}C$. The strain BR2 also presented unidentified aminolipids with various $R_{f}$ values. Among the aminolipids, ornithinolipid increased gradually during the cultivation for all strains. The changes in fatty acid compositions showed a temperature dependency that the proportion of unsaturated acids decreased as the growth temperature increased. The proportion of straight chain saturated fatty acids decreased as the aerial mycelium developed, and it was most evident for the mutant strain M13 with more extensive aerial mycelium. The mutant strain BR2 presented significantly higher level of iso branched odd numbered saturated fatty acids.

키워드

참고문헌

  1. 단국대학교 논문집 제 30집, 자연과학편 Streptomyces coelicolor A3(2)의 actinorhodin생성에 미치는 아미노산의 영향 김재헌;피재호;오충훈;최정은
  2. Chem. Phys. Lipids v.21 Lipid of the Streptomycetes. Structural investigation and biological interrelation Batracov,S.G.;L.D.Bergelson https://doi.org/10.1016/0009-3084(78)90052-X
  3. Appl. Microbiol. Biotechnol. v.57 Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses Beney,L.;P.Gervais https://doi.org/10.1007/s002530100754
  4. Microbial development Morphological and physiological differentiation in Streptomyces Chater,J.K.
  5. Microbiology v.144 Taking a genetic scalpel to the Streptomyces colony Chater,J.K. https://doi.org/10.1099/00221287-144-6-1465
  6. Lipid analysis(2nd ed.) Christie,W.W.
  7. Biology of Actinomycetes'88 Physiological regulation of sporulation of Streptomyces griseus Ensign,J.C.;Okami,Y.(ed.);T.Beppu(ed.);H.Ogawara(ed.)
  8. J. Bacteriol. v.179 Lipid and fatty acid composition of cytoplasmic membranes from Streptomyces hygroscopicus and its stable protoplast-type L form Hoischen,C.;K.Gura;C.Luge;J.Gumpert https://doi.org/10.1128/jb.179.11.3430-3436.1997
  9. Microbiol. Rev. v.55 Iso-and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance Kaneda,T.
  10. J. Bacteriol. v.173 Phospholipids and a novel glycine-containing lipoamino acid in Cytophaga johnsonae Stanier strain C21 Kawazoe,R.;H.Okuyama;W.Reichardt;S.Sasaki https://doi.org/10.1128/jb.173.17.5470-5475.1991
  11. The prokaryotes The famiy Streptomycetaceae Kutzner,H.I.;Starr,M.P.(ed);H.Stolp(ed.);H.G.Truper(ed.);A.Balows(ed.);H.G.Schlegel(ed.)
  12. J. Bacteriol. v.180 Localization and function of early cell division proteins in filamentous Escherichia coli cells lacking phosphatidylethanolamine Mileykovskaya,E.;Q.Sun;W.Margolin;W.Dowhan
  13. J. Microbiol. v.34 Effects of initial pH and L-arginine on the composition of fatty acids of Streptomyces viridochromogenes Oh,C.H.;S.O.Jung;J.H.Pyee;J.H.Kim
  14. Microbiology v.140 Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics Olukoshi,E.R.;N.M.Packter https://doi.org/10.1099/00221287-140-4-931
  15. Method in enzymology v.72 Extraction of tissue lipids with a solvent of low toxicity Radin,N.S.;J.H.Lowinstein(ed.)
  16. FEMS Microbiol. Rev. v.75 A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria Russel,N.J.;N.Fukunaga https://doi.org/10.1111/j.1574-6968.1990.tb04093.x
  17. FEMS Microbiol. Lett. v.108 Fatty acid lipid composition in mycelia from submerged or surface culture of Stretomyces viridochromogenes Shim,M.S.;J.H.Kim https://doi.org/10.1111/j.1574-6968.1993.tb06065.x
  18. Biotech. Lett. v.19 Neutral lipids and lipase activity for actinorhodin biosynthesis of Streptomyces coelicolor A3(2) Shim,M.S.;W.S.Kim;J.H.Kim https://doi.org/10.1023/A:1018345305250
  19. Appl. Environ. Microbiol v.58 Changes in fatty acid branching and unsaturation of Streptomyces griseus and Brevibacterium fermentans as a response to growth temperature Suutari,M.;S.Laakso
  20. FEMS Microbiol. Lett. v.48 Effect of ammonium ions on the composition of fatty acids in Streptomyces fradiae producer of tylosin Vancura,A.;T.Marsaleki;V.Vancura https://doi.org/10.1111/j.1574-6968.1987.tb02624.x
  21. FEMS Microbiol. Lett. v.131 In vivo analysis of straight-chain and branched-chain fatty acid biosynthesis in three actinomycetes Wallace,K;B.Zhao;H.A.I.McArthur;K.A.Reynolds