Utilization of Various Electron Acceptors in Shewanella putrefaciens DK-l

Shewanella putrefaciens DK-1의 Fe(III) 환원 특성

  • Published : 2003.09.01

Abstract

Microbial Fe(III) reduction is an important factor for biogeochemical cycle in anaerobic environments, especially sediment of freshwater such as lakes, ponds and rivers. In addition, the Fe(III) reduction serves as a model for potential mechanisms for the oxidation of organic compounds and the reduction of toxic heavy metals, such as chrome or uranium. Shewanella putrefaciens DK-1 was a gram-negative, facultative anaerobic Fe(III) reducer and used ferric ion as a terminal electron acceptor for the oxidation of organic compounds to $CO_{2}$ or other oxidized metabolites. The ability of reducing activity and utilization of various electron acceptors and donors for S. putrefaciens DK-1 were investigated. S. putrefaciens DK-1 was capable of using a wide variety of electron acceptor, including $NO_{3}^{-}$, Fe(III), AQDS, and Mn(IV). However, its ability to utilize electron donors was limited. Lactate and formate were used as electron donors but acetate and toluene were not used. Fe(III) reduction of S. putrefaciens DK-l was inhibited by the presence of either $NO_{3}^{-}$ or $NO_{2}^{-}$. Further S. putrefaciens DK-1 used humic acid as an electron acceptor and humic acid was re-oxidized by nitrate. Environmental samples showing the Fe(III)-reducing activity were used to investigate effects of the limiting factors such as carbon, nitrogen and phosphorus on the Fe(III) reducing bacteria. The highest Fe (III) reducing activity was measured, when lactate as a carbon source and S. putrefaciens DK-1 as an Fe(III) reducer added in untreated sediment samples of Cheon-ho and Dae-ho reservoirs.

Shewanella putrefaciens DK-1은 그람음성, 통성 혐기성 세균으로 $NO_{3}$, Fe(III), Mn(IV), humic acid와 같은 다양한 전자수용체를 이용한다. S. putrefaciens DK-1의 전자공여체의 이용능력은 제한적이며, lactate나 formate는 좋은 전자공여체로 이용되지만 acetate나 toluene은 이용하지 못하였다. 다양한 전자수용체간의 경쟁을 살펴보기 위해 전자수용체로 Fe(III)와 같이 $NO_{3}^{-}$, $NO_{2}^{-}$를 넣어 주었을 매 Fe(III)의 환원은 저해되었다. 또한 5. putrefaciens DK-1은 전자수용체로 토양에 광범위하게 존재하는 humic acid를 이용하였으며, 환원된 humic acid는 질산염에 의해서 다시 산화되었다. Fe(III) 환원능이 있는 환경 시료를 이용하여 탄소, 질소, 인과 같은 제한 요인이 Fe(III) 환원세균의 활성에 미치는 효과를 조사하였다. 천호지의 저질토와 대호의 농토에 각각 탄소원, 질소원, 인을 첨가해 주었을 경우 S. putrefaciens DK-1과 탄소원을 동시에 첨가해 주었을 때 가장 높은 철 환원능을 보여주었다.

Keywords

References

  1. 한국 미생물학회지 v.38 천호지 저질토에서 분리한 철 환원 세균의 특성 박재홍;이일규;전은형;안태영
  2. Geoehim. Cosmochim. Acta. v.53 Reactive iron in marine sediment Canfield,D.E. https://doi.org/10.1016/0016-7037(89)90005-7
  3. J. Bacteriol. v.174 Effect of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200 DiChristina,T.J. https://doi.org/10.1128/jb.174.6.1891-1896.1992
  4. Microbiol. Rev. v.55 Dissimilatory Fe(Ⅲ) and Mn (Ⅳ) reduction Lovley,D.R.
  5. Annu. Rev. Microbiol. v.47 Dissimilatory metal reduction Lovley,D.R. https://doi.org/10.1146/annurev.mi.47.100193.001403
  6. Appl. Environ. Microbiol. v.56 Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15 Lovley,D.R.;D.J.Lonergan
  7. Appl. Environ. Microbiol. v.51 Organic matter mineralization with Reduction of ferric iron in anaerobic sediments Lovley,D.R.;E.J.P.Phillips
  8. Appl. Environ. Microbiol. v.54 Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese Lovley,D.R.;E.J.P.Phillips
  9. Appl. Environ. Microbiol. v.55 Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens Lovley,D.R.;E.J.P.Phillips;D.J.Lonergan
  10. Environ. Sci. Technol. v.25 Enzymatic versus nonenzymatic mechanisms for Fe(Ⅲ) reduction in aquatic sediments Lovley,D.R.;E.J.P.Phillips;D.J.Lonergan https://doi.org/10.1021/es00018a007
  11. Appl. Environ. Microbiol. v.58 Letter to the editor: Acetate oxidation by dissimilatory Fe(Ⅲ) reducers Lovley,D.R.;E.J.P.Phillips;F.Caccavo,Jr.;H.K.Nealson;C.Myers
  12. Appl. Environ. Microbiol. v.61 Fe(Ⅲ) and S° oxidation by Pelobacter carbinolicus Lovley,D.R.;E.J.P.Phillips;D.J.Lonergan;P.K.Widman
  13. Nature v.382 Humic substances as electron acceptors for microbial respiration Lovley,D.R.;J.D.Coates;E.L.Blunt-Harris;E.J.P.Phillips;J.Woodward https://doi.org/10.1038/382445a0
  14. Environ. Microbiol. v.1 Humic as an electron donor for anaerobic respiration Lovley,D.R.;J.L.Fraga;J.D.Coates;E.L.Blunt-Harris https://doi.org/10.1046/j.1462-2920.1999.00009.x
  15. Appl. Environ. Microbiol. v.62 Rapid anaerobic benzene oxidation with a variety of chelated Fe(Ⅲ) forms Lovley,D.R.;J.C.Woodward;F.H.Chapelle
  16. J. Bacteriol. v.172 Respiration-linked proton translocation coupled to anaerobic reduction of mangnese(Ⅳ) and iron(Ⅲ) in shewanella putrefaciens MR-1 Myers,C.R.;K.H.Nealson https://doi.org/10.1128/jb.172.11.6232-6238.1990
  17. Appl. Environ. Microbiol. v.58 Microbial reduction of manganese and iron: New approaches to carbon cycling Nealson,K.H.;C.R.Myers
  18. Microbiol. Lett. v.119 Anaerobic respiration of Shewanella putrefaciens requires both chromosomal and plasmid-bone genes Saffarini,D.A.;T.J.Dicherstina;D.Bermudes;K.H.Nealson https://doi.org/10.1111/j.1574-6968.1994.tb06900.x