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An Adaptive Algorithm Applied to a Design of Robust Observer
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Primary goal of adaptive observers would be to estimate the true states of a plant. Identi-
fication of unknown parameters is of secondary interest and is achieved frequently with the
persistent excitation condition of some regressors. Nevertheless, two problems are linked to each
other in the classical approaches to adaptive observers; as a result, we get a good state estimate
once after a good parameter estimate is obtained. This paper focuses on the state estimation
without parameter identification so that the state is estimated regardless of persistent excitation.
In this direction of research, Besancon (2000) recently summarized that most of adaptive
observers in the literature share one common canonical form, in which unknown parameters do
not affect the unmeasured states. We enlarge the class of linear systems from the canonical form
of (Besancon, 2000) by proposing an adaptive observer {with additional dynamics) that allows
unknown parameters to affect those unmeasured states. A recursive algorithm is presented to
design the proposed dynamic observer systematically. An example confirms the design procedure
with a simulation result.
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1. Introduction

The design of adaptive observers” has received
considerable attention in the last several years.
The first contribution to adaptive observer design
was made in {Carroll and Lindorfe, 1973) for
linear time-invariant systems with unknown para-
meters. Since then, many interesting results have
been reported in the literature. Based on a new
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canonical form for a linear system, a significantly
simplified observer structure was suggested by
Luders and Narendra (1973; 1974). The con-
struction of adaptive observers with arbitrarily
high rates of convergence was considered in
(Kreisselmeier, 1977). Several years later, an
adaptive observer for nonlinear systems was pro-
posed in (Bastin and Gevers, 1988) by extending
the result of (Luders and Narendra, 1974).
However, most of adaptive observers in the
literature require the condition of persistent ex-
citation for the regressor in order to have the state

1) Some authors refer to ’adaptive observer’ as an ob-
server that yields both the state and the parameter
estimates. In this paper, it just means an observer
which has a parameter update law regardless of its
convergence.
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estimate. In case of aforementioned linear adap-
tive observers, the observer includes a parameter
identifier so that they first estimate unknown
parameters (which is usually achieved under the
persistent excitation condition) and then the
standard Luenberger observer technique is ap-
plied to estimate the state. On the other hand, the
adaptive observer proposed in (Marino, 1990 ;
Marino and Tomei, 1992) is designed for the
‘adaptive observer canonical form’ and the persis-
tent excitation is not required as long as the
system has the canonical form. If the system is not
in the canonical form, some parameter-dependent
coordinate change needs to be applied to trans-
form the system into the canonical form, so that
parameter estimation becomes necessary to have
the estimate of states in the original coordinates.
In this paper, we consider a system given by

x=Ax+Bu+G0o

y=Cx W

where x is the state in R”, # the input in R™, y
the output in R?, and @ is a vector of unknown
constant parameters in ¥ Since G is a constant
matrix, it is not likely to be persistently excited for
several unknown parameters.

When we do not have persistently excited re-
gressors like (1), the class of systems admitting
an adaptive observer is quite restricted. In
(Besancon, 2000}, Besancon presented a unified
framework for many existing adaptive observers
that do not require parameter estimation”. Ac-
cording to (Besancon, 2000), almost all adaptive
observers in the literature, that can estimate the
state x without first estimating #, have been
designed for the following particular class of

systems :

y=Ayy+Ayz+Bsu+Gy0

2=Azay+AzbZ+Bzu (2)

where y is the output of the system and Az is
Hurwitz. In this form, & does not affect the

2) In (Besancon, 2000), parameter estimation is a bonus
when the regressors are persistently excited. Also, note
that only linear systems are dealt with in this paper
while nonlinear systems are considered in (Besancon,
2000).
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unmeasured state z.

We present in this paper a new adaptive ob-
server for different classes of systems from (2), in
which uncertain parameters enter the unmeasured
states. While the design requires no hypothesis of
persistent excitation, what is assumed in this pa-
per is the following:

Assumption 1. Let us define

C
CA
Hk L= .
CA*
For the system (1), there exists an integer v (1<
r) such that
1. H1.G=0 and
2. there are some matrices L, P, I of appropriate
dimensions satisfying

PA-LH,)+(A—LH,)TP<0 (3a)
PG=HIT (3b)
P>0 (3¢)

Remark 1. It is presupposed in this assumption
that #>1. However, when the conditions (3a)-
(3¢} hold with =0, the system (1) is the very
case considered in (Besancon, 2000), and the
standard technique can be applied to obtain an
adaptive observer. (This technique also appears
as the initial step of the proposed recursion in this
paper.) If (C, A) is an observable pair, then the
conditions (3a)-(3c) become easy to hold as 7 in
creases, since the column and the row spaces of
H, are enlarged; on the other hand, the condition
H;_1G=0 gets more restrictive. Therefore, each 7
characterizes its own class of systems.
As an example, consider the system
VY=x1, X1=X2,

%=zt &0, (4)

z2=Azz
where A; is Hurwitz. Clearly, it is not in the
adaptive observer form proposed in (Besancon,
2000), but can be shown to satisfy Assumption 1
with »=1. An interesting way to show this is
to apply the technique of (Besancon, 2000),
assuming that the output vy is Hix=[x1, x217 so
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that x» is also measurable. Then, the system (4)
becomes in the adaptive observer form of (2), and
thus it admits the error Lyapunov function sug-
gested in (Besancon, 2000), which has the posi-
tive definite matrix P=diag { Lxs, P:} where P,
is such that P,A.+ Az P.<0. Finally, it is easy to
show that the matrix P satisfies Assumption 1.

In the next section, we present a dynamic
adaptive observer for (1) only under Assumption
1, followed by the recursive algorithm to design
the gains of the proposed observer in a systematic
manner. Section 3 illustrates a design example
with a simulation result. Conclusions are found
in Section 4.

2. Main Results

For the system (1) that satisfies Assumption I,
we propose a dynamic adaptive observer of the
form :

=0,(Ci—y) + 0
£#=A%+Bu+GO+N,(CE—v)+NoA (5)
A= (CR—y) + Td

where X is the estimate of the true state x, and
§<= R? and A=R'® are the internal states of addi-
tional dynamics (thus, we know their values).
Then, the observer problem is solved if we design
all @:[@a, @b], N= I:Na, Nb] and qr=|:qfa,
¥,] matrices so that, by defining § : =8— @ and
e . =X—x, the following error dynamics

f=0.Co+ B:
¢=Ae+GO+NeCe+No (6)
/i: U,Ce+ Ui

guarantees that e () — 0 and A(#)— 0 as £ — <o,
in the sense that there exist positive definite
matrices P and Q satisfying

g1" &
e e | --yets

(Indeed, LaSalle-Yoshizawa theorem, (Krstic et
al.,, 1995, p.24), proves the convergence. Note
that the dimension of @ is lower than P because
we are not interested in the convergence of 4.

In the subsequent part of the paper, we will
show the design of the matrices @, N and ¥ by
a recursive algorithm. Therefore, the main contri-
bution of the paper is summarized as

Theorem 1. For the system (I) satisfying As-
sumption 1, there exists a dynamic adaptive ob-
server (5) with additional A-dynamics of order
(rXp), so that £(t)— x(t) as t — ©

The idea of the construction of (5) is to as-
sume, in the beginning, that Hre= (H.£ —Hx)
is available for measurement although it is not
true since Hrx is not all measurable. Then, the
standard technique of adaptive observer yields
an adaptive observer with an error Lyapunov
matrix pair P and @ of appropriate sizes. Now
we change our virtual assumption so that Hy_ie
is available for measurement but CA"¢ is not.
Then, the designed observer in the previous step
is not implementable since it depends on the
signal CA"e. Thus we extract the signal CA,e
from the observer structure and design addi-
tional dynamics with which the use of CA.e is
eliminated. In the next step, we proceed by as-
suming that Hr-»e is measurable but CA,-1¢ is
not. The recursion goes to the end if we get a
dynamic observer that requires only the measure-
ment of Hye= Ce but not others.

The recursion begins by the following initial
step.

2.1 [Initial step

Assuming that H,e is measurable, we choose
our initial error system S, as follows (compare
this with (6)):

§=—FTH,e =DigHr-1e+Dis(CAe)

S { ¢=GO+Ae—LHe=G0+A,~DiH,-1e— D (CAe)

where ["and L are given in Assumption 1 and
—I'"=[Diqg, Dis] and L=[Dss, Dss]. Clearly,

this error system is obtained from the observer

O=—TIT(H,2—Hx)
%

=GO+ A% +Bu—L(H,#—H,x). @)

Error convergence easily follows since, with
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y=[07, ¢”]7, the function V() =% yTPy=
% 9~T§+% eT Pe satisfies that

V=8"(—I"H,e) +e"PGI+e"P(A—LH,) e
=—e’Qe

where Q=—sym { P(A—LH,)}, in which sym
{ A} denotes %(A +AT), is positive definite by

Assumption 1.

2.2 Recursive design

Suppose that a system S, (% is an index be-
tween 0 and # and the recursion begins when k=
7 and ends with £=0) given by

' §=013er*DM:DmHk-lﬁDls/Hle(CAke)
Si 0 ¢ e=G0+Aet DuHiet Dud=G0+ Ae+ Doy 10+ Dsd+ Doy CA%e)
A=DuHie+ Dost=Dsoli-164 Dt Dy (CA%e)

where JERY e¢C€R" and ASR?"™®. The
matrices G, A and H, (from A and C) are given
in (1), and all D matrices have appropriate
dimensions (for example, Di2=[Dia, Dis]). Note
that A is null when k=7, but increases its
dimension as the recursion proceeds.

The system S, will be concisely denoted by

y=Fy+Dyw+w (8)
were y=[07, e, A7)7, Dy=[D%,, D%, D%] and

0 DiHiaw Dis
G A+DyHr Do (9)
0 DiHiy D

F:

if v and w are taken as
v=CA*e and w=0 (10)

By introducing v (and the zero input w) the
system Sy is now decomposed into the term in-
cluding CA*e and the rest. However, since CA”*
e is not available for measurement (when £>1),
we will propose an alternative design of v and w
which depend only on Hi_ie and the state of
added dynamics that is known to observer. Before
presenting the alternative design of v and w, we
confirm the following claim holds for S, at this
stage.
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Claim 1. There exist positive definite matrices
D
P=R@m+2T=m2 gpg QE R such that,

with 'V () =§ 7' Py,
V=y"P(Fy+D,(CA*y))
Y2 |T 72 (11)

where yp=e and ys=A.

The equation (11) implies that, if v and w are
taken as (10), then the states e and A of the system
Sk converge to zero. This claim holds true from
the initial step when k=7 and will be justified by
Corollary 1 as the recursion proceeds.

Now we assume that H_je is available for
measurement but CA*e is not. Then, the follow-
ing theorem shows that, by attaching additional
dynamics, we can design an alternative v and w,
instead of (10), that does not depend on the
unmeasurable quantity CA*e.

Theorem 2. Suppose that the system (8) satisfies
Claim 1 when v and w are taken as (10). If the
following dynamic system is appended to (8)

7=~ v~ CA* ' Doy — CA* ' DooHy1e— CA* ' Disi (12a)
y=9+CA"* e (12b)

then the system (8) and (12) guarantees that the
states e, A and 7y converge to zero by redesigning

v="Viy, w=(FDs+DsCA*Dy) y=: Wiy (13)

in which y is measurable if H,_,e is assumed to be
measurable. The matrix gain V is chosen so that

o [

Q* D= 0 } >0 (14)

[—% CA* o} sym { Vot CA*Dyy )

Remark 2. Note that the linear matrix inequality
(14) always has a solution that is V,=¢@I with
sufficiently large ¢>0.

Corollary 1. Under the assumptions of Theorem
2, the augmented system (8), (12) and (13) can
be written as a single system :
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0 Dfliit DYoo,y CA" Dy DVt Wy
g AtDafli [
ile|_ L(Dz,,v.%,\CA*-l: b Bl ) »
dlil o Dillirt (DViwn ) CA* Dy DVt Wi A
1 ~CA" Dl “i_ w S 7
I e

where WE¥=[ Wi, Wi., Wi ). For this system,
it follows that

a ] r

d el e el” e

% P P /1 - /1 Q /1

i 7
7 7
where

= PO
P=T [0 JT>0 (16)
QZT*TQ*T*>O (17)

I+D,[0 CA* 0 D,,}

T=| [0 CA* 0]] [

(18)
in which, Ty is the lower-right block of T with the
size of (n+p(r—~k+1)) by (n+plr—Ek+1)),

Le.,

[ pecar o) [os)
[cA*=1 0] I

T* =

Finally the recursion procedure is quite ob-
vious. By the initial step, Claim 1 holds for S,
and Corollary 1 presents the system S,_; by the
equation (15). Indeed the new D;; matrices are
identified by redefining [A7, »7]7 as the new A
and by extracting CA" 'e term. Then Claim I
again holds for S,_;, which enables to apply
Corollary 1 to the system Sr_, and the system
Sr-» is obtained. This recursion will end with S,
because Theorem 2 will yield an implementable
adaptive observer (i.e., the system Sp). As a
result, the system (15) of Corollary 1 will be the
same as (6), and all matrices @, N and ¥ of (5)
are derived straightforwardly.

Proof of Theorem 2 and Corollary 1.
First of all, note that

y=nt+CAMe
=(—p~CA* "' Doy — CA* ' DouHi1e— CA* ' Dosd)
+CA* (GO +Ae+DooHa-re+ DA+ D)
=—y+CA%
where the assumption that H, 1G=0 (Assump-

tion 1) is used.
We now define

E=y+Dsy (19)
Then
$'=F7+va-fw-va +DyCA* i (20)
=FE—FDsyy+D,CA*€,— DyCA* Doy +w
Also, let
V(e §) =1 EPE+ TS (1)

be a Lyapunov function candidate for the aug-
mented system Sp and (12). Then, the derivative
of V becomes

V=EPIRes DCA'E) ~E'PFDDCADu) 34 P
ot A CA g
== 8,108 417V (A% (A Dy

The last equality can be rewritten using (14) as

by (20)

by (11) and (13).

. &l" &
V(E y)=—| &| Q4 & (22)
y y

Therefore, it is concluded, by LaSalle-Yoshizawa
theorem, that &, & and y converge to zero, which
in turn implies the states e, £ and 7 converge to
zero by (19) and (12).

To prove Corollary 1, we would simply need to
express in the original coordinates the augmented
system (1), the function V (&, 3 ) of (21) and Q«
of (22). In fact, through (19) and (12b), the
states y=[4, e, £] and 7 are transformed to &
and y. This can be written concisely by

[1=7[3]
7 y
where T is already given by (18).
3. Design Example
The mechanical system shown in Fig. | is

composed of a mass—spring-damper system and
an actuator that generates the force . We assume
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F! : N
4y 1 P M 1 I N
A B | vAivAv N
Actuator N
Fig. 1 Mechanical system example
that the actuator has dynamics as follows :
F=—aF+u (23)

where @ is the time constant and # is the control
input. Suppose that not only the force F' gen-
erated by the actuator, but also an unknown
constant force # drives the system. The equation
of motion is given by

Mztczthkz=F+0 (24)

where M, ¢, k are the mass, the damping co-
efficient, and the spring constant of the system,
respecti vely. By choosing the state variables x =
[x1, X2, x3]7=[2, 2, F]7 and assuming that the
displacement z is measured, we have the state
space model :

0 I 0 0

.k e 1 1], .

T 1+ 0| ut 0 §=" Ax+ButGf (25)
0 0 -a 0

y=[100]z="Cx

When the system parameters are given that M =1,
£=0.5, ¢=0.3, and g=1.5, it can be shown that
Assumption 1 holds with »=1 and with

1 2 20.0000 9.6667 —11.3333
L=]~-05 =03}, Q=| 9.6667 6.0000 —3.3333|,
0 1 —11.3333 —3.3333 20.0000

10.0000 3.0000 —3.3333
P=| 30000 66667 O | and 7=[

.6667}
—33333 0 6.6667 6

With #=1, the system S; in Section 2.2 satisfies
Claim 1. Indeed, the initial step of Section 2.1
guarantees the claim with the updated P and @,
that is, diag { I, P} and Q.

since CAe is not available for
measurement, we proceed one step further using
Theorem 2. Hence, the following adaptive ob-

However,

server is obtained :
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T y T
xt
10F —— estimate of x1

x . . .
0 & 10 15 20 25 30

x2
- estimate of 2
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e

T T T
pa—
i+ ~ simale of X3

. . .

0 5 10 15 20 25 30
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T

A5 . : L s s
[ § 0 15 20 25 30
tima

Fig. 2 Simulation results

§=Dla(C9?—y) +Depv+ w1
szf'f‘ G9+D24(C£—y) +Bu+Dzb1)+(Uz
1=—0—CDavv— CDza (CE—y)

where

Dig=~3, Dip=—06.6667, Daa=[~1 0.5 0], Dpp=[-2 03 —1]

0= (DlaH0D2b+leCADzb)J7

W= [Gle+ (A +D:C) DZb'FDszADzb]ﬁ

v=10y

y=n+Ci-y

The simulation results are given in Fig. 2 where
all the initial conditions of the system are set to
1 while all the initial conditions in the observer
are set to 0. The results show that the estimates
converge to the true states.

4. Conclusion

In this paper, a recursive algorithm to design
the adaptive observer for the linear systems that



An Adaptive Algorithm Applied to a Design of Robust Observer 1449

do not have persistently excited regressors. By
Assumption 1, the class of systems that admits
the observer is different from that of (Besancon,
2000), and the index 7 characterizes the class. The
larger index 7 implies the unknown parameter has
larger relative degree from the output y when the
parameter is regarded as an input. The recursive
design indicates the higher order dynamics is
necessary when the index 7 increases.

From the proposed recursion algorithm, it se-
ems easy to develop an automated design package
on a PC.
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