Radix-4 Trellis Parallel Architecture and Trace Back Viterbi Decoder with Backward State Transition Control

Radix-4 트렐리스 병렬구조 및 역방향 상태천이의 제어에 의한 역추적 비터비 디코더

  • 정차근 (호서대학교 전기정보통신공학부)
  • Published : 2003.09.01

Abstract

This paper describes an implementation of radix-4 trellis parallel architecture and backward state transition control trace back Viterbi decoder, and presents the application results to high speed wireless LAN. The radix-4 parallelized architecture Vietrbi decoder can not only improve the throughput with simple structure, but also have small processing delay time and overhead circuit compared to M-step trellis architecture one. Based on these features, this paper addresses a novel Viterbi decoder which is composed of branch metric computation, architecture of ACS and trace back decoding by sequential control of backward state transition for the implementation of radix-4 trellis parallelized structure. With the proposed architecture, the decoding of variable code rate due to puncturing the base code can easily be implemented by the unified Viterbi decoder. Moreover, any additional circuit and/or peripheral control logic are not required in the proposed decoder architecture. The trace back decoding scheme with backward state transition control can carry out the sequential decoding according to ACS cycle clock without additional circuit for survivor memory control. In order to evaluate the usefulness, the proposed method is applied to channel CODEC of the IEEE 802.11a high speed wireless LAN, and HDL coding simulation results are presented.

본 논문에서는 2-step 트렐리스를 하나로 통합한 Radix-4 트렐리스 병렬구조 및 역방향 상태천이의 연속적인 제어에 의한 역추적 비터비 디코더를 구현하고, 이를 초고속 무선 랜에 응용한 결과를 제시한다. Radix-4 트렐리스 병렬구조의 비터비 디코더는 throughput을 개선함과 동시에 구조가 간단하고 지연시간 및 회로의 overhead가 적은 이점이 있다. 이 특성을 기반으로, 본 논문에서는 Radix-4 트렐리스 병렬구조의 구현을 위한 가지 메트릭의 계산과 ACS의 구성, 역방향 상태천이의 연속적인 제어에 의한 역추적 복호 등으로 구성된 새로운 비터비 디코더를 제안한다. 본 제안방법의 적용으로 펑처링의 결과로 인한 가변 부호율의 복호를 통합된 하나의 디코더로 대응할 수 있으며, 부호율의 변화에 따라 별도의 부가회로나 주변제어 회로를 요구하지 않는 특성을 갖는다. 또한, 본 논문에서 제안한 역방향 상태천이의 제어에 의한 역추적 복호는 메모리 제어를 위한 별도의 회로를 추가함이 없이 ACS 사이클 타임에 정확이 동기되어 순서적인 복호를 수행할 수 있게 한다. 제안방법의 유용성을 검증하기 위해, 초고속 무선 랜 규격인 IEEE 802.11a PHY 계층의 채널부호 및 복호에 적용하고, HDL 언어로 구현한 회로의 시뮬레이션 결과를 제시한다.

Keywords

References

  1. D. J. Costello, Jr., H. Hegenaur, H. Imai, and S. B. Wicker, 'Applications of error-control coding,', IEEE Trans.Information Theory, vol. 44, no. 6, pp. 2531 - 2560, Oct. 1998 https://doi.org/10.1109/18.720548
  2. A. Sabanmaria and F. J. Lopes-Hernandez, Wireles LAN : Standards and application, Artech House, 2001
  3. A. J. Viterbi and J. K. Omura, Princilples of digital communication and coding, McGraw-Hill, NY, 1979
  4. G. G. Forney, 'The Viterbi algorithm,' Proceedings of the IEEE, vol. 61, no. 3, pp. 268 - 278, March 1973 https://doi.org/10.1109/PROC.1973.9030
  5. H. Liou, 'Implementing the Viterbi algorithm,' IEEE Signal Processing Mag., pp. 42-52, Sept. 1995 https://doi.org/10.1109/79.410439
  6. H. Dawid, O. J. Joeressen, and H. Meyr, 'Viterbi decoders : High performance algorithms and architectures,' Digital Signal Processing for Multimedia Systems edited by K. Parhi and T. Nishitani, Marcel Dekker 1999
  7. P. G. Gulak and T. Kailath, 'Locally connected VLSI architectures for the Viterbi algorithm,' IEEE J. Selected Areas Commun., vol. 6, no. 3, pp. 527 - 537, April 1988 https://doi.org/10.1109/49.1921
  8. P. J. Black and T. H. Meng, 'Hybrid survivor path architectures for Viterbi decoders,' In Proc. Int. Conference on Acoustics, Speech, and Signal Processing 93 (ICASSP'93), pp. 433 - 436, Nov. 1993 https://doi.org/10.1109/ICASSP.1993.319148
  9. T. K. Trung, M. Shih, I. S. Reed, and E. H. Satorius, 'A VLSI design for a trace-back Viterbi decoder,' IEEE Trans. Commun., vol. 40, no. 3, pp. 616 - 624, March 1992 https://doi.org/10.1109/26.135732
  10. C.Shung, H. Lin, R. C. Sypher, P. H. Siegel, and H. K. Thapar, 'Area-efficient architecture for the Viterbi algorithm - Part I: Theory,' IEEE Trans. Commun., vol. 41, no. 4, pp. 636 - 644, April 1993 https://doi.org/10.1109/26.223789
  11. G. Fettweis and H. Meyr, 'High-rate Viterbi processor: A systolic array solution,' IEEE J. Selected Areas Commun., vol. 8, no. 8, pp. 1520 - 1534, Oct. 1990 https://doi.org/10.1109/49.62830
  12. P. G. Gulak and E. Shwedyk, 'VLSI structures for Viterbi receivers: Part I-General theory and applications,' IEEE J. Selected Areas Commun., vol. SAC-4, pp. 142 - 154, Jan. 1986
  13. P. J. Black and T. H. Meng, 'A 140-Mb/s, 32-state, radix-4 Viterbi decoder,' IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1877 - 1885, Dec. 1992 https://doi.org/10.1109/4.173118
  14. J. Sparso, H. N. Jorgensen, E. Paaske, S. Pedersen, and T. R. Petersen, 'An area-efficient topology for VLSI implementation of Viterbidecoders and other shuffle-exchange type structures,' IEEE J. Solid-State Circuits, vol. 26, no. 2, pp. 90 - 97, Feb. 1991 https://doi.org/10.1109/4.68122
  15. H. K. Thapar and H. M. Cioffi, 'A block processing method for designing high-speed Viterbi detectors', In Proc. International Conference on Commun. 89(ICC'89), pp. 1096 - 1100, 1989 https://doi.org/10.1109/ICC.1989.49853
  16. P. J. Black and T. H. Meng, 'A unified approach to the Viterbi algorithm state metric update for shift register processes', In Proc. International Conference on Acoustics, Speech, and Signal Processing 92(ICASSP'92), pp. V.629 - V.632, 1992 https://doi.org/10.1109/ICASSP.1992.226677
  17. H. Burkhardt and L. C. Barbosa, 'Contributions to the application of the Viterbi algorithm,' IEEE Trans. Information Theory, vol. IT-31, no. 5, pp. 626 - 634, Sept. 1985
  18. C. M. Radar, 'Memory management in a Viterbi algorithm,' IEEE Trans. Commun., vol. 29, pp. 1399 - 1401, Sep. 1981 https://doi.org/10.1109/TCOM.1981.1095146
  19. G. Feygin and P. G. Gulak, 'Architectural tradeoffs for survivor sequence memory management in Viterbi decoders,' IEEE Trans. Commun., vol. 41, no. 3, pp. 425 - 429, March 1993 https://doi.org/10.1109/26.221067
  20. R. Cypher and C. B. Shung, 'Generalized trace back techniques for survivor memory management in the Viterbi algorithm,' In Proc. GLOBECOM., pp. 1318 - 1322, Dec. 1990 https://doi.org/10.1109/GLOCOM.1990.116708
  21. G. Fettweis, 'Algebraic survivor memory management for Viterbi detectors,' In Proc Int. Conference on Commun. 92(ICC'92), pp. 339 - 343, 1992 https://doi.org/10.1109/ICC.1992.268236
  22. R. J. McElliece and I. M. Onyszchuk, 'Truncation effect in Viterbi decoding,' In Proc. Proc. of the IEEE Confer. on Military Commun., (Boston, MA), pp. 29.3.1 - 29.3.3 Oct. 1989 https://doi.org/10.1109/MILCOM.1989.103985
  23. I. M. Onyszchuk, 'Truncation length for Viterbi decoding,' IEEE Trans. Commun., vol. 39, no. 7, pp. 1023 - 1026, July 1991 https://doi.org/10.1109/26.87203
  24. A. P. Hekstra, 'An alternative to metric rescaling in Viterbi decoders,' IEEE Trans. Commun., vol. 37, no. 11, pp. 1220 - 1222, Nov. 1989 https://doi.org/10.1109/26.46516
  25. C. Shung et al, 'VLSI architectures for metric normalization in the Viterbi algorithm,' In Proc. International Conference on Commun. 90(ICC'90), pp. 1723 - 1728, 1990 https://doi.org/10.1109/ICC.1990.117356