Design and fabrication of Power Amplifier with HBT for IMT-2000 Handsets

IMT-2000 단말기용 HBT 전력증폭기 설계 및 제작

  • Published : 2003.04.01

Abstract

In this paper, a 2-stage power amplifier(PA) for IMT-2000 handset has been designed and fabricated using SiGe HBT, which has excellent frequency characteristics and linearity, to reduce size and weight instead of existing linearization techniques. DC I-V characteristics and S-parameter of SiGe HBT were simulated by Agilent circuit simulator(ADS), with large signal Gummel-Poon nonlinear circuit model. Then the output and interstage matching circuits were designed to satisfy the high power condition and the high gain condition, respectively. The experimental results showed output power of 27.1dBm and ACLR of 20dB, PAE of 34%, and linear power gain of 18.9dB over frequency ranges from 1920MHz to 1980MHz.

본 논문은 IMT-2000 단말기용 전력증폭기의 선형성을 증가시키기 위해 기존의 선형화 기법을 사용하는 대신 선형성이 우수한 Infineon 사의 SiGe HBT를 이용하여 IMT-2000 단말기용 2단 전력증폭기를 설계하고 제작하였다. HBT의 비선형 모델은 Gummel-Poon 모델을 이용하였으며, 등가모델을 이용하여 회로 시뮬레이터인 ADS를 사용하여 DC I-V 특성과 입ㆍ출력측의 S-파라미터 특성을 살펴보았다. 시뮬레이션한 S-파라미터를 이용하여 2단 전력증폭기의 첫째단은 고이득 조건으로 정합하고, 둘째단은 고출력 조건으로 정합하였다. 시뮬레이션 결과를 바탕으로 hybrid 형태로 제작한 2단 전력증폭기는 IMT-2000 상향 주파수 대역인 1920∼1980MHz에서 27.1dBm의 출력전력과 18.9dB의 전력이득, 20dB의 ACLR, 34%의 전력부가효율을 얻었다.

Keywords

References

  1. G. Venna and N. Mielke, 'Reliability of ETOX based flash memories,' Proc. IRPS, p. 158, 1988
  2. B. V. Keshavan and H. C. Lin, 'MONOS memory element,' IEDM, p. 140, 1968
  3. 고석웅, 정학기, '나노 구조 Double Gate MOSFET의 핀치오프특성에 관한 연구' 한국해양정보통신학회논문지, vol. 6, no. 7, p. 1074, 2002
  4. M. C. Peckerar and N. Bluzer, 'Hydrogen annealed nitride/oxide dielectric structures for radiation hardness,' IEEE Trans. Nucl. Sci., vol. NS-27, p. 1753, 1980 https://doi.org/10.1109/TNS.1980.4331101
  5. W. D. Brown, R. V. Jones, and R. D. Nasby, ''The MONOS memory transistor: application in a radiation-hard nonvolatile RAM', Solid-State Electronics, vol. 28, no. 9, p. 877, 1985 https://doi.org/10.1016/0038-1101(85)90079-6
  6. M. H. White, Y. Yang, A. Purwar, and M. French, 'A low voltage SONOS nonvolatile semiconductor memory technology,' IEEE Trans. Comp. Pack. Manu. Tech., vol. 20, p. 190, 1997 https://doi.org/10.1109/95.588573
  7. Y. Yatsuda, T. Hagiwara, S. Minami, R. ondo, K. Uchida, and K. Uchiumi, 'Scaling down MNOS nonvolatile memory devices,' Jap. J. Appl. Phys., vol. 21, 521-1, p. 85, 1982 https://doi.org/10.1143/JJAP.21.85
  8. E. Suzuki, H. Hiraishi, K. Ishi, and Y. Hayashi, 'A low voltage alterable EEPROM with meta1-oxide-nitride-oxide- semiconductor (MONOS) structure,' IEEE Trans. Elect. Dev., vol. ED-30, p. 122, 1983 https://doi.org/10.1109/T-ED.1983.21085
  9. F. R. Libsch, A. Roy, and M. H. White 'Amphoteric trap modeling of multi-dielectric scaled SONOS nonvolatile memory structures, 8th NVSM, 1986
  10. Z. A. Weinberg, K. J. Stein, T. N. Nguyen, and J. Y. Sun, 'Ultrathin oxide-nitride-oxide films,' Appl. Phys. Lett., vol. 57, no. 12, p. 1248, 1990 https://doi.org/10.1063/1.103499
  11. H. Reisinger, M. Franosch, B. Hasler, and T. Bohm, 'A Novel SONOS structure for nonvolatile memories with improved data etention,' VLSI Tech. Digest Tech. Symp. 9A-2, 1997
  12. F. R. Libsch, A. Roy, and M. H. White, 'Charge transport and storage of low programming voltage SONOS/MONOS memory devices,' Solid-State electronics, vol. 33, no. 1, p. 105, 1990 https://doi.org/10.1016/0038-1101(90)90017-9
  13. J. A. Topich and E. T. Yon, 'The effects of high temperature annealing on MNOS devices,' J. electrochem. Soc., vol. 123, p. 535, 1976 https://doi.org/10.1149/1.2132872
  14. S. Minami and Y. Kamigaki, 'New scaling uidelines for MNOS nonvolatile memory devices,' IEEE Transactions on Electron Devices, vol. 38, no. 11, p. 2519, 1991 https://doi.org/10.1109/16.97417