DOI QR코드

DOI QR Code

Nanostructured Materials and Nanotechnology : Overview

  • Muhammed, Mamoun (Materials Chemistry Division Royal Institute of Technology (KTH)) ;
  • Tsakalakos, Thomas (Department of Ceramic and Materials Engineering Rutgers University)
  • Published : 2003.11.01

Abstract

Nanostructured materials can be engineered by the controlled assembly of several suitable nano-objects as the building blocks. While, materials properties are determined by their atomic and molecular constituents and structure, their functionalities emerge when the microstructure of these early ensembles is in the nanometer regime. The properties and functionalities of these ensembles may be different as their size grows from the nano-regime to the micron regime and bulk structures. Nanotechnology, offers a unique possibility to manipulate the properties through the fabrication of materials using the nano-objects as building blocks. Nanotechnology is therefore considered an enabling technology by which existing materials, virtually all man-made materials, can acquire novel properties and functionalities making them suitable for numerous novel applications varying from structural and functional to advanced biomedical in-vivo and in-vitro applications.

Keywords

References

  1. Acta Mater. v.48 no.1 Nanostructured Materials : Basic Concepts and Microsturcture H.Gleiter https://doi.org/10.1016/S1359-6454(99)00285-2
  2. Nature v.403 no.6765 Reverse Microemulsion Synthesis of Nanostructured Complex Oxides for Catalytic Combustion A.J.Zarur;J.Y.Ying https://doi.org/10.1038/47450
  3. Langmuir v.16 no.7 Reverse Microemulsion-mediated Synthesis and Structural Evolution of Barium Hexaaluminate Nanoparticles A.J.Zarur;H.H.Hwn;J.Y.Ying https://doi.org/10.1021/la9908034
  4. Langmuir v.16 no.7 Synthesis and Characterization of Nanocrystalline Yttrium Oxide Prepared with Tetraalkylammonium Hydroxides M.D.Fokema;E.Chiu;J.Y.Ying https://doi.org/10.1021/la991156j
  5. Chim. Mater. v.11 no.11 Sol-gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals C.C.Wang;J.Y.Ying https://doi.org/10.1021/cm990180f
  6. Nanostr. Mater. v.6 no.1-4 Chemical Processing and Applications for Nanostructured Materials B.H.Kear;P.R.Strutt https://doi.org/10.1016/0965-9773(95)00046-1
  7. Nanostr. Mater. v.8 no.1 Nanomaterial Powders and Deposits Prepared by Flame Spray Procedding of Liquid Precursors J.Karthikeyan;C.C.Berdt;J.Tikkanen;J.Y.Wang;A.H.King,H.Herman https://doi.org/10.1016/S0965-9773(97)00066-4
  8. Nanostr. Mater. v.6 no.5-8 Electroldeposited Nanocrystals: Synthesis, Properties and Industrial Applications U.Erb https://doi.org/10.1016/0965-9773(95)00114-X
  9. Unpublished Results, MIT H.Choi;E.S.Ahn;J.Y.Ying
  10. J. Am. Ceram. Soc. v.74 no.11 Low-temperature Creep of Nanocrystalline Titanium (Ⅳ) Oxide H.Hahn;R.S.Averback https://doi.org/10.1111/j.1151-2916.1991.tb06863.x
  11. Mater. Res. Soc. Proc. v.132 M.Gallois;R.Mathur;F.Lee;J.Y.Yoo
  12. J. Am. Cerm. Soc. v.79 no.5 Using Simultaneous Deposition and Rapid Growth to Produce Namostructured Composite Films of AIN/TiN by Chemical Vapor Deposition Y.J.Liu;H.J.Kim;Y.Egashira;H.Kimura;H.Komiyama https://doi.org/10.1111/j.1151-2916.1996.tb08594.x
  13. Appl. Phys. Lett. v.77 no.8 Grain-size-dependent Thermal Conductivity of Nanocrystalline Yttria-stabilized Zirconia Films Grown by Metal-organic Chemical Vapor Depositon G.Soyez;J.A.Eastman;L.J.Thompson;R.J.DiMelfi;G.R.Bai;P.M.Baldo;A.W.McCormick;A.A.Elmustafa;M.F.Tambwe;D.S.Stone https://doi.org/10.1063/1.1289803
  14. Unpublished Results, MIT J.T.McCue;J.Y.Ying
  15. Thin Film Processes Ⅱ K.F.Jensen;J.L.Vossen(ed.);W.Kern(ed.)
  16. J. Electrochem. Soc. v.143 no.2 Atmosheric Pressure CAtmospheric Pressure Chemical Vapor Deposition of Titanium Nitride from Tetrakis (diethylamido) Titanuim and Ammonia J.N.Musher;R.G.Gordon https://doi.org/10.1149/1.1836510
  17. Phil. Mag. B. v.68 no.6 Anomalous Defect Behavior Resulting from the Hydriding of Nanocrystalline Palladium J.A.Eastman;M.R.Fitzsimmons;L.J.Thompson https://doi.org/10.1080/09500839308242425
  18. Acta Mat. v.45 no.10 Elactic and Tensile Behavior of Nanocrystalline Copper and Palladium P.G.Sanders;J.A.Eastman;J.R.Weertman https://doi.org/10.1016/S1359-6454(97)00092-X
  19. Nanostr. Mater. v.5 no.2 Processing and Mechanical-behavior of Nanocrystalline FE E.Fougere;J.R.Weertman;R.W.Siegel
  20. NATO ASI on Nanostructures to be Published M.Muhanmmed
  21. NATO ASI on Nanostructures to be Published S.Goheen
  22. NATO ASI on Nanostructures to be Published M.Miglierini
  23. Mater. Sci. Eng. A v.256 no.1-2 Nanocrystaline NiAl-processing, Characterization and Mechanical Properties M.S.Choudry;M.Dollar;J.A.Eastman https://doi.org/10.1016/S0921-5093(98)00810-7
  24. Mater. Sci. Eng. A v.168 no.2 Structure and Properties of Ultrafine-grained Materials Produced by Severe Plastic-deformation R.Z.Valiev;A.V.Korznikov;R.R.Mulyukov https://doi.org/10.1016/0921-5093(93)90717-S
  25. Jom-J. Mim. Met. S. v.52 no.4 Understanding the Unique Properties of SPD-induced Microstrctures R.Z.Vaiev;T.C.Lowe;A.K.Mukherjee https://doi.org/10.1007/s11837-000-0129-6
  26. Nanostr. Mater. v.8 no.3 Improvements in the Synthesis and Compation of Nanocrystaline Materials P.G.Sanders;G.E.Fougere;L.J.Thompshon,J.A.Ezstman;J.R.Weertman https://doi.org/10.1016/S0965-9773(97)00167-0
  27. Nanostr. Mater. v.2 no.4 Synthesis of Nanophaes Materials by Electron Beam Evaporation J.A.Eastman;L.J.Thompson;D.J.Marshall https://doi.org/10.1016/0965-9773(93)90179-F
  28. J. Mater. Sci. v.29 no.24 Readily Superpalastic Forging at High-strain Rates in an Aluminium-vased Alloy Produced from Nanocrystalline Powders K.Taketani;A.Uoya;K.Othera;T.Uehara;K.Higashi,A.Inoue;T.Masumoto https://doi.org/10.1007/BF00354013
  29. J. Mater. Res. v.11 no.9 Precipitation of BCC Nanocrystals in Bulk Mg-Cu-Y Amorphous Alloys W.S.Liu;W.L.Johnson https://doi.org/10.1557/JMR.1996.0302
  30. Mater. Trans. JIM v.36 no.6 Nanocrystalline Mixed Structure Prepared by Crystallization of Cu-Ag-La Amorphous Alloys A.Inoue;J.Park;A.Makino;T.Masumoto https://doi.org/10.2320/matertrans1989.36.697
  31. Mater. Sci. Forum v.307 Synthesis of High Strength Bulk Nanocrystalline Alloys Containing Remaining Amorphous Phase A.Inoue;C.Fan;A.Takeuchi https://doi.org/10.4028/www.scientific.net/MSF.307.1
  32. Mater. Sci. Eng. A v.217-218 Synthesis and Hig Mechanical Strength of Al-based Alloys Consisting Mainly of Nanogranular Amorphous Particles A.Inoue;H.M.Kimura;K.Sasamori;T.Masumoto https://doi.org/10.1016/S0921-5093(96)10282-3
  33. Nanostr. Mater. v.6 no.1-4 Nanostructured Materials : State of the Art and Perspectives H.Gleter https://doi.org/10.1016/0965-9773(95)00025-9
  34. MRS Bull. v.24 no.1 Real-time X-ray Scattering Studies of Surface Structurd During Metalorganic Chemical Vapor Depositon of GaN G.B.Stephenson;J.A.Eastman;O.Auciello;A.Munkholm;C.Thompson;P.Fuoss;P.Fini;S.P.Den-Baars;J.S.Speck https://doi.org/10.1557/S088376940005168X
  35. Nanostructured Films and Coatings T.Tsakalakos;M.Croft;O.M.Chow(et al.)(ed.)
  36. Scripta Mater. v.40 no.10 Determination of Elastoplastic Properties by Instrumented Sharp Indentation A.E.Giannakopoulos;S.Suresh https://doi.org/10.1016/S1359-6462(99)00011-1
  37. Scripta Mater. v.42 no.9 Determination of Elasto-plastic Properties by Instrumented Sharp Indentation : Guidelines for Propetry Extraction T.A.Venkatesh;K.J.Van Vliet;A.E.Giannakopoulos;S.Suresh https://doi.org/10.1016/S1359-6462(00)00311-0
  38. Acta Mater. v.46 no.16 A New Method for Estimating Residual Stresses by Instrumented Shrap Indentation S.Suresh;A.E.Giannakopoulos https://doi.org/10.1016/S1359-6454(98)00226-2
  39. L.Dutta;H.Hoffman
  40. Proc. 2nd. World Congress on Particle Technology G.Jimbo
  41. Royal Institute of Technology Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications D.K.Kim
  42. Chem. Mater. v.15 no.8 Protective Coating of Superparamagnetic Iron Oxide Nanoparticles D.K.Kim;M.Mikhaylova;Y.Zhang;M.Muhanmmed https://doi.org/10.1021/cm021349j
  43. Acta Mater. v.51 no.2 Deformation of Electrodedposited Nanocrystalline Nickel K.S.Kumar;S.Suresh;M.F.Chisholm,J.A.Horton;P.Wang https://doi.org/10.1016/S1359-6454(02)00421-4
  44. Nanostr. Mater. v.10 no.6 High Pressure Low Temperature Sintering of Nanocrystalline Alumina S.C.Liao;Y.J.Chen;B.H.Kear;W.E.Mayo https://doi.org/10.1016/S0965-9773(98)00125-1
  45. Nanostruct. Mater. v.4 no.3 Chemical Vapor Condensation of Nanostructured Ceramic Powders W.Chang;G.Skandan;H.Hahn;S.C.Danforth;B.H.Kear https://doi.org/10.1016/0965-9773(94)90144-9
  46. Mater. Lett. v.34 no.3-6 Scalable High-rate Production of Non-agglomerated Nanoposders in Low Pressure Flames N.Glumac;Y.J.Chen;G.Skandan;B.Kear https://doi.org/10.1016/S0167-577X(97)00162-6
  47. Int. J. Power Metall. v.37 no.1 Dense Nanoscale single and Multi-phase Ceramice Sintered by Transformation Assisted Consolidation J.Colaizzi;W.E.Mayo;B.H.Kear.;S.C.Liao
  48. Acta Mater. v.45 no.10 Theory of High Pressure Low Temperature Sintering of Bulk Nanocrystal Line TiO₂ S.C.Liao;W.E.Mayo;K.D.Pae https://doi.org/10.1016/S1359-6454(97)00087-6
  49. Report DMI 41023-Final, for US Army Aviation & Missile Command High Pressure-high Temperature Consolidation of Carbon Nanotubes for Structural and Other Applications O.A.Voronov;G.S.Tompa;B.H.Kear;W.E.Mayo;S.C.Liao;R.K.Sandangi;K.J.Livi;R.O.Loutfy
  50. Web site of Center for Highly Integrated Information Processing and Storage Systems (CHIPS) L.R.Carley
  51. P. IEEE. v.85 no.4 Patterned Magnetic Nanostrutures and Quantized Magnetic Disks S.Y.Chou https://doi.org/10.1109/5.573754
  52. J. Appl. Phys. v.79 no.8 Optimizing the Giant Magnetoresistance of Symmetric and Bottom Spin Valves W.F.Egelhoff;P.J.Chen;C.J.Powell;M.D.Stiles;R.D.McMichael;C.L.Lin;J.M.Sivertsen;J.H.Judy;K.Takano;A.E.Berkowitz;T.C.Anthony;J.A.Burg https://doi.org/10.1063/1.361352
  53. IEEE. T. Magn. v.35 no.2 Process Considerations for Critical Features in High Areal Density Thin Film Magnetoresistive Heads : A Review R.E.Fontana;S.A.MacDonald;A.A.Santini;C.Tsang https://doi.org/10.1109/20.750649
  54. J. Appl. Phys. v.81 no.8 Microstructured Magnetic Tunnel Junctions W.J.Gallagher;S.S.P.Parkin;Y.Lu;X.P.Bian;A.Marley;K.P.Roche;R.A.Altman;S.A.Rishoton;C.Jahnes;T.M.Shaw;G.Xiao https://doi.org/10.1063/1.364744
  55. US Patent 5,557,596 Ultrahigh Density Storage Device G.Gibson;T.I.Kamins;M.S.Keshner;S.L.Naberhuis;C.M.Perlow;C.C.Yang
  56. Jpn. J. Appl. Phys. v.232 no.3B Nanometer Recording on Graphiteand Si Substrate Using an Atomic Force Microscope S.Hosaka;H.Koyanagi;A.Kikukawa
  57. Data Storage, 6.10 TPI Growth is the Key to Delaying Superparamagnetics Arrival T.Howell;R.Ehrlich;M.Lippman
  58. Sci. v.264 no.5157 Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films S.Jin;T.H.Tiefel;M.McCormack;R.A.Fastnacht;R.Ramesh;L.H.Chen https://doi.org/10.1126/science.264.5157.413
  59. Appl. Phys. Lett. v.66 no.22 Nanometer-scale Recording on Chalcogenide Films with an Atomic Force Microscope H.Kado;T.Tohda https://doi.org/10.1063/1.114243
  60. Handbook of Mageneto-optical Data Recording Outlook for Magneto-optical Recording M.H.Kryder;McDaniel(ed.);Victora(ed.)
  61. P. IEEE. v.87 no.6 High-denisty Data Storage Based on the Atomic Force Microscope H.J.Mamin;R.P.Ried;B.D.Terris;D.Ruger https://doi.org/10.1109/5.763314
  62. Datatech(2nd ed.) Nanotechnology : A Data Storage Perspective A.K.Menon;B.K.Gupta
  63. Microelectron Eng. v.46 no.1-4 Ultrahigh Density, High data-rate NEMS-based AFM Data Storage System P.Vettiger;J.Brugger;M.Despont;U.Drechsler;U.Durig.W.Haberle;M.Lutwyche;H.Rothuizen;R.Stutz;W.Widmer;G.Binning https://doi.org/10.1016/S0167-9317(99)00006-4
  64. Iss. Volume Hologram Optical Memories, Optics and Photonics News R.G.Zech https://doi.org/10.1364/OPN.3.8.000016
  65. Adapted from IBMs Web Site
  66. Annu. Rev. Phys. Chem. v.51 Self-assembled Ceramics Produced by Complex-fluid Templation D.M.Dabbs;I.A.Aksay https://doi.org/10.1146/annurev.physchem.51.1.601
  67. J. Phys. Condens. Mat. v.910 Mossbauer Spectrometry of Fe(Cu)MB-type Nanocrystalline Alloys 1. The Fitting Model for the Mossbauer Spectra M.Miglierini;J.M.Greneche https://doi.org/10.1088/0953-8984/9/10/017
  68. Hyperfine Interact. v.133 no.1-4 Methodology of Interfacial Regions in FeMCuB-type Nannocrystals M.Miglierini;J.M.Greneche https://doi.org/10.1023/A:1012621010394
  69. J. Am. Chem. Soc. v.123 no.10 Continuous Crystalline Carbonate Apatite Thin Films. A Biomimetic Approach G.F.Xu;I.A.Aksay;J.T.Groves https://doi.org/10.1021/ja002537i
  70. Phys. Rev. B. v.54 no.14 Structure and Enhanced Magnetization in Fe/Pt Multilayers A.Simopoulos;E.Devlin;A.Kostikas;A.Jnakowski;M.Croft;T.Tsakalakos https://doi.org/10.1103/PhysRevB.54.9931