DOI QR코드

DOI QR Code

Synthesis of Polycrystalline YAG Ceramics by Milling-precipitation

분쇄-침전을 이용한 다결정 YAG 세라믹스의 합성

  • 홍석범 (홍익대학교 재료공학부) ;
  • 정현기 (홍익대학교 재료공학부) ;
  • 심수만 (홍익대학교 재료공학부)
  • Published : 2003.11.01

Abstract

Yttrium Aluminum Garnet (YAG) powders were prepared by precipitation of Y hydroxides during milling of alumina powders. The powder calcined at 1200$^{\circ}C$ for 4 h contained a small amount of Yttrium Aluminum Monoclinic (YAM) in addition to YAG. However, phase-pure YAG was obtained in the compact of the milled powder with an average particle size of 0.57 ${\mu}$m at 1300$^{\circ}C$, which is much lower than those (l500∼1600$^{\circ}C$) for a mixed oxide method. The powder was found to exhibit an excellent sinterability regardless of the addition of a sintering aid, SiO$_2$(350 ppm Si). The undoped sample were sintered to a relative density of 98% at l600$^{\circ}C$. In contrast, the addition of SiO$_2$ caused a considerable densification to occur at 1500$^{\circ}C$ and the relative density reached 97.7%. But the sintering aid had little effect on the densification at 1600$^{\circ}C$, showing a similar relative density to the undoped sample.

알루미나 분말을 분쇄하면서 Y 수화물을 동시에 침전시켜 YAG 분말을 합성하였다. 하소 분말 (l20$0^{\circ}C$, 4 h)에는 YAG 외에 소량의 YAM이 남아 있었다. 그러나 평균 입경 0.57 $\mu$m으로 분쇄한 분말 성형체에서는 산화물 혼합법에서 YAG 단일상이 얻어지는 온도 (l500∼1$600^{\circ}C$) 보다 훨씬 낮은 130$0^{\circ}C$ 에서 YAG 단일상이 이미 형성되었다. 분말의 소결성은 우수하여 소결조제 SiO$_2$(350 ppm Si) 의 첨가에 관계없이 치밀화가 잘 일어났다. SiO$_2$를 첨가하지 않은 경우, 1$600^{\circ}C$에서 98%의 손결밀도를 얻었다. SiO$_2$를 첨가한 경우에는 150$0^{\circ}C$에서 치밀화가 더 잘 일어나 97.7%의 소결밀도가 얻어졌으며, 1$600^{\circ}C$에서는 SiO$_2$의 소결촉진 효과가 나타나지 않아 밀도는 SiO$_2$를 첨가하지 않은 시편과 비슷하였다.

Keywords

References

  1. J. Am. Ceram. Soc. v.77 no.11 Phase Development and Luminescence in Chromium-Doped Yttrium Aluminum Garnet (YAG;Cr) Phosphors K.M.Kinsman;J.McKittrick;E.Sluzky;K.Hess https://doi.org/10.1111/j.1151-2916.1994.tb04516.x
  2. J. Phy. Chem. Solids v.60 Photoluminescence Characteristics of YAG;Tb Phosphor Particles with Spherical Morphology and Non-aggregation Y.C.Kang;I.W.Lenggoro;S.B.Park;K.Okuyama https://doi.org/10.1016/S0022-3697(99)00191-2
  3. Mat. Res. Bull. v.35 Preparation of Cr-Doped $Y_3Al_5O_{12}$ Phosphors by Heterogeneous Precipitation Methods and their Luminescent Properties I.Matsubara;M.Parathaman;S.W.Allison;M.R.Cates;D.L.Beshears;D.E.Holocomb https://doi.org/10.1016/S0025-5408(00)00202-6
  4. Ceram. Eng. Sci. Proc. v.12 no.9-10 High-temperature Creep of Some Single Crystal Oxides G.S.Corman https://doi.org/10.1002/9780470313848.ch10
  5. Ceram. Eng. Sci. Proc. v.12 no.9-10 High-temperature Deformation Behavior of Polycrystalline Yttrium Aluminum Garnet(YAG) T.A.Parthasarathy;T.Mah;K.Keller https://doi.org/10.1002/9780470313848.ch11
  6. J. Am. Ceram. Soc. v.78 no.1 Fabrication of Polycrystalline Transparent YAG Ceramics by a Solid-state Reaction Method A.Ikesue;I.Furusato;K.Kamata https://doi.org/10.1111/j.1151-2916.1995.tb08389.x
  7. J. Mater. Res. v.7 no.3 Synthesis of Yittrium Aluminum Garnet by Reverse Strikd Precipitation P.Apte;H.Burke;H.Pickup https://doi.org/10.1557/JMR.1992.0706
  8. Kor. J. Ceram. v.1 no.1 Characterization of Spray-dried Yttrium Aluminum Garnet Powder S.M.Sim
  9. J. Am. Ceram. Soc. v.83 no.4 Low-temperature Fabrication of Transparent Yttrium Aluminum Garnet (YAG) Ceramics without Additives J.G.Li;T.Ikegami;J.H.Lee;T.Mori https://doi.org/10.1111/j.1151-2916.2000.tb01305.x
  10. J. Mater. Sci. Lett. v.5 no.10 Synthesis of Yttrium Aluminates by the Sol-Gel Process G.Gowda https://doi.org/10.1007/BF01730273
  11. J. Mater. Sci. v.27 Formation of Alkoxy-derived Yttrium Aluminium Oxides O.Yamaguchi;K.Takeoka;K.Hirota;H.Takano;A.Hayashida https://doi.org/10.1007/BF01142034
  12. J. Mater. Sci. v.35 Phase Formation in Yttrium Aluminum Garnet Powders Synthesized by Chemical Methods S.M.Sim;K.Keller;T.I.Mah https://doi.org/10.1023/A:1004709401795
  13. Soild State Comm. v.119 Novel Synthesis of $Y_3Al_5O_{12}$ (YAG) Leading to Transparent Ceramics T.Tachiwaki;M.Yoshinaka;K.Hirota;T.Ikegami;O.Yamaguchi https://doi.org/10.1016/S0038-1098(01)00293-9
  14. J. Mater. Sci. v.31 Sol-gel Processing and Sintering of Yttrium Aluminum Garnet (YAG) Powders R.Manalert;M.N.Rahaman
  15. J. Am. Ceram. Soc. v.82 no.8 Precipitation and Calcination Processes for Yttrium Aluminum Garnet Precursors Synthesized by the Urea Method N.Matsushita;N.Tsuchiya;K.Nakatsuka;T.Yanagitani https://doi.org/10.1111/j.1151-2916.1999.tb02029.x
  16. J. Am. Ceram. Soc. v.80 no.5 Comparison of Solid-state and Spray-pyrolysis Synthesis of Yttrium Aluminate Powders M.Nyman;J.Caruso;M.J.Hampden-Smith;T.T.Kodas https://doi.org/10.1111/j.1151-2916.1997.tb02969.x
  17. Mat. Lett. v.39 Synthesis of YAG Phase by a Citrate Combustion Technique S.Roy;L.Wang;W.Sigmund;F.Aldinger https://doi.org/10.1016/S0167-577X(98)00230-4
  18. J. Am. Ceram. Soc. v.78 no.4 Fabrication and Optical Properties of High-performance Polycrystalline Nd:YAG Ceramics for Solid-state Lasers A.Ikesue;T.Kinoshita;K.Kamata;K.Yoshida https://doi.org/10.1111/j.1151-2916.1995.tb08433.x
  19. Ceram. Bull. v.67 no.12 Advanced Technology in Electroceramics in Japan K.Okazaki
  20. J. Ceram. Proc. Res. v.4 no.3 Synthesis of Yttrium Aluminum Garnet Power by a Citrate Gel Method B.J.Chung;J.Y.Park;S.M.Sim