Delay Control using Fast TCP Prototype in Internet Communication

인터넷 통신에서 고속 TCP 프로토타입을 이용한 지연 제어

  • Published : 2003.11.01

Abstract

Measurements of network traffic have shown that self-similarity is a ubiquitous phenomenon spanning across diverse network environments. We have advance the framework of multiple time scale congestion control and show its effectiveness at enhancing performance for fast TCP prototype control. In this paper, we extend the fast TCP prototype control framework to window-based congestion control, in particular, TCP. This is performed by interfacing TCP with a large time scale control module which adjusts the aggressiveness of bandwidth consumption behavior exhibited by TCP as a function of "large time scale" network state. i.e., conformation that exceeds the horizon of the feedback loop as determined by RTT. Performance evaluation of fast TCP prototype is facilitated by a simulation bench-mark environment which is based on physical modeling of self-similar traffic. We explicate out methodology for discerning and evaluating the impact of changes in transport protocols in the protocol stack under self-similar traffic conditions. We discuss issues arising in comparative performance evaluation under heavy-tailed workload. workload.

본 논문에서는 고속 프로토타입 TCP 트래픽 제어 프레임워크를 TCP 기반의 신뢰할 수 있는 전송 및 윈도우 기반 혼잡제어로 확대한다. TCP의 소요 대역폭 응답의 적극성을 LTS(large time scale) 네트워크 상태의 함수 형태, 즉 RTT(round-trip time)가 결정한 피드백 루프의 한계를 넘어서는 정보의 형태로 조정하는 LTS 모듈과 TCP를 연계시키는 방법으로 수행한다. 특히, TCP 트래픽의 ACK를 지연시키는 메커니즘을 제시하고, 제어된 ACK 흐름은 TCP 활동의 트래픽 특성을 비교 평가한다. 링크 사용 또는 버퍼 점유에 대한 정보를 사용함으로서 혼잡 제어에 대한 ACK 지연을 통보할 수 있고, ACK 지연 메커니즘을 다양한 네트워크 노드에서 구현된다. 본 논문에서는 이러한 혼잡 제어를 통한 연결의 공정성 뿐 아니라 고속 TCP 프로토타입이 패킷 손실을 보다 효과적으로 줄이며, 시뮬레이션 결과를 통해 요구된 버퍼 크기에 대한 처리량이 뛰어남을 입증하였다.

Keywords

References

  1. S. Birchfield. Elliptical head tracking using intensity gra-dients and color histograms. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages 232-237,Santa Barbara, CA, June 1998
  2. G. Bradski. Computer vision face tracking for use in a per-ceptual user interface. Technical Report Q2, Intel Corpora-tion, Microcomputer Research Lab, Santa Clara, CA, 1998
  3. M. L. Cascia and S. Sclaroff. Fast, reliable head tracking under varying illumination. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, CO, June 1999
  4. A. Christian and B. Avery. Digital smart kiosk project. In Proc. ACM SIGCHI - Human Factors in Computing Systems Conference, pages 155162, Los Angeles, CA, April 1998
  5. J. Crowley and F. Berard. Multi-modal tracking of faces for video communications. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages 640?45,Puerto Rico,PR, June 1997
  6. T. Darrell, G. Gordon, J. Woodfil, and M. Harville. A vir-tual mirror interface using real-time robust face tracking. In Proc. of the 3rd Int. Conf. on Automatic Face and Gesture ognition, pages 616?21, Nara, Japan, April 1998
  7. T. Darrell, B. Moghaddam, and A. Pentland. Active face racking and pose estimation in an interactive room. Techni-cal Report 356, M.I.T. Media Laboratory Perceptual Com-puting Section, Cambridge, MA, 1996
  8. Y. Ebisawa and S. Satoh. Effectiveness of pupil area detec-tion technique using two light sources and image difference method. In A. Szeto and R. Rangayan, editors, Proceedings of the 15th Annual Int. Conf. of the IEEE Eng. in Medicine and Biology Society, pages 1268?269, San Diego, CA, 1993