A Biomechanical Study on a New Surgical Procedure for the Treatment of Intertrochanteric Fractures in relation to Osteoporosis of Varying Degrees

대퇴골 전자간 골절의 새로운 수술기법에 관한 생체역학적 분석

  • 김봉주 (인제대학교 의생명공학대학 의용공학과) ;
  • 이성재 (인제대학교 의생명공학대학 의용공학과) ;
  • 권순용 (가톨릭대학교 의과대학 여의도 성모병원 정형외과학 교실) ;
  • 탁계래 (건국대학교 의과대학 의용공학과) ;
  • 이권용 (세종대학교 기계공학과)
  • Published : 2003.10.01

Abstract

This study investigates the biomechanical efficacies of various cement augmentation techniques with or without pressurization for varying degrees of osteoporotic femur. For this study, a biomechanical analysis using a finite element method (FEM) was undertaken to evaluate surgical procedures, Simulated models include the non-cemented(i.e., hip screw only, Type I), the cement-augmented(Type II), and the cemented augmented with pressurization(Type III) models. To simulate the fracture plane and other interfacial regions, 3-D contact elements were used with appropriate friction coefficients. Material properties of the cancellous bone were varied to accommodate varying degrees of osteoporosis(Singh indices, II∼V). For each model. the following items were analyzed to investigate the effect surgical procedures in relation to osteoporosis of varying degrees : (a) von Mises stress distribution within the femoral head in terms of volumetric percentages. (b) Peak von Mises stress(PVMS) within the femoral head and the surgical constructs. (c) Maximum von Mises strain(MVMS) within the femoral head, (d) micromotions at the fracture plane and at the interfacial region between surgical construct and surrounding bone. Type III showed the lowest PVMS and MVMS at the cancellous bone near the bone-construct interface regardless of bone densities. an indication of its least likelihood of construct loosening due to failure of the host bone. Particularly, its efficacy was more prominent when the bone density level was low. Micromotions at the interfacial surgical construct was lowest in Type III. followed by Type I and Type II. They were about 15-20% of other types. which suggested that pressurization was most effective in limiting the interfacial motion. Our results demonstrated the cement augmentation with hip screw could be more effective when used with pressurization technique for the treatment of intertrochanteric fractures. For patients with low bone density. its effectiveness can be more pronounced in limiting construct loosening and promoting bone union.

본 연구에서는 유한요소법을 이용하여 대퇴골 전자간 골절 치료에 대한 다양한 수술기법을 골밀도 변화에 따라 생체역학적으로 분석하여 이를 평가하고자 한다. 이에 구현된 모델들은 압박 고관절 나사만을 이용하여 시술한 모델 (Type I), 삽입된 압박 고관절 나사 주위에 시멘트 영역을 확보한 뒤 골 시멘트로 보강하는 시술을 구현한 모델 (Type II),대학교추가의 골소실이 없이 시멘트를 가압하여 주입하는 시술을 구현한 모델 (TypeIII)의 3가지 형태로 구현하였다. 시술 상황에 따라 골절부위와 삽입물의 경계면 주위에 접촉요소를 사용하기 위해 적절한 마찰계수를 설정하였으며, 골다공증 정도 (Singh Indices, II∼V)에 따라 대퇴골의 물성치를 적절하게 적용시켰다. 각 모델에 있어 골밀도 변화에 따른 수술기법의 차이를 분석하기 위하여 다음과 같은 인자를 분석하였다 : (a) 대퇴골두 내에서의 von Mises 응력 부피비, (b) 대퇴골두 망상골과 인공 삽입물내에서의 최대 von Mises 응력 (PVMS), (c) 대퇴골두 내에서의 최대 von Mises 변형률 (MVMS), (d) 골절 부위와 인공 삽입물 주위에서의 미세운동량. 수술기법 중 Type III가 대퇴골두 내에서 골밀도 변화에 상관없이 가장 낮은 PVMS, MVMS 수치를 보여 가장 효율적인 결과를 나타내었다. 이는 기존 시술법 (Type I,II)에 비해 내고정 실패 가능성이 가장 적을 것으로 예측되었다. 특히, 골밀도가 낮을 때에는 Type III의 수술 효과가 더욱 커지는 것으로 나타났다. 또한, 삽입물 주위에서 미세운동량을 분석한 결과, Type III의 수치가 다른 시술법들의 15∼20%로 나타나 시멘트를 가 압하여 보강하는 시술법이 삽입물 주위의 미세운동을 억제하는데 있어 가장 효과적이다는 것을 증명하는 것이다. 이러한 결과로부터, 압박 고관절 나사를 이용한 대퇴골두 전자간 골절 치료에 있어 골 시멘트를 가압하여 보강하는 방법이 골밀도가 낮은 환자에 있어 인공삽입물의 내고정 및 골유합에 가장 큰 효과를 보일 것으로 사료된다.

Keywords

References

  1. R. Mohan, R. Karthikeyan and S.V. Sonanis, 'Dynamic hip screw: does side make a difference? Effects of clockwise torque on right and left DHS', Injury Int. J Care Injured, Vol. 31, pp. 697-699, 2000
  2. B.D. Hartog, E. Bartal, F. Cooke, and F. Cooke, 'Treatment of the unstable intertrochanteric fracture', J. Bone Joint Surg., Vol. 73A, No.5, pp.726-733, 1991
  3. R.F. Kyle, T.M. Wright, and A.H. Burstein, 'Biomechanical analysis of the sliding characteristics of compression hip screws', J. Bone Joint Surg., Vol. 62A, No.8, pp.1308-1314, 1980
  4. M.R. Baumgaertner, S.L. Curtin, D.M. Lindskog, and J. M. Keggi, 'The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip', J. Bone Joint Surg., Vol. 77A, No.7, pp1058-1064, 1995
  5. R.C. Haynes, R.G. Poll, and A.W. Miles, 'Failure of femoral head fixation' a cadaveric analysis of lag screw cut-out with the gamma locking nail and AO dynamic hip screw', Injury, Vol. 28, No. 5-6, pp. 337-341, 1997 https://doi.org/10.1016/S0020-1383(97)00035-1
  6. S.B. Goodman, T.W. Bauer, D. Carter, P.P. Casteleyn, SA Goldstein, R.F. Kyle, S. Larsson, C.J. Stankewich, M.F. Swiontkowski, A.F. Tencer, D.N. Yetkinler, and R.D. Poser, 'Norian SRS cement augmentation in hip fracture treatment: Laboratory and initial clinical results', Clin. Orthop., Vol. 348, pp. 42-50, 1998
  7. J. Choueka, K.J Koval, and J.D. Zuckerman, 'Cement augmentation of intertrochanteric fracture fixation; A cadaver comparison of 2 techniques', Acta. Orthop. Scand., Vol. 67, No.2, pp. 153-157, 1996 https://doi.org/10.3109/17453679608994661
  8. D.C. Moore, E.P. Frankenburg, J.A. Goulet, and S.A. Goldstein, 'Hip screw augmentation with an in situ-setting calcium phosphate cement: an in vitro biomechanical analysis', J. Orthop, Trauma, Vol. 18, No.8, pp. 577-583, 1997
  9. S. Elder, E. Frankenburg, and J. Goulet, 'Biomechanical evaluation of calcium phosphate cementaugmented fixation of unstable intertrochanteric fractures', J. Orthop. Trauma, Vol. 14, No.6, pp. 386-393, 2000 https://doi.org/10.1097/00005131-200008000-00002
  10. I.D. Oh, W. and H. Harris, 'Proximal strain distributionin the loaded femur', J. Bone and Joint Surg. Vol. 66A, No.1, pp. 75-85, 1978
  11. T.C. Davis, J.L. Sher, and A. Horsman, 'Intertrochanteric femoral fractures: Mechanical failure after internal fixation', J Bone Joint Surg., Vol. 72B, pp. 26-31, 1990
  12. R.C. Mulholland, and D.R. Gunn, 'Sliding screw plate fixation of intertrochanteric femoral fractures', J. Trauma, Vol. 12, pp. 581-591, 1972
  13. R.E. Elke, E.J. Cheal, and C. Simmons, 'Threedimensional anatomy of the cancellous structures within the proximal femur from computed tomography data', J. Orthop. Res., Vol. 13, No.4, pp. 513-523, 1995 https://doi.org/10.1002/jor.1100130406
  14. J.C, Lotz, T.N. Gerhart, and W.C. Hayes, 'Mechanical properties of trabecular bone from the proximal femur: A quantitative CT study', J. of Computer Assisted Tomography, Vol. 14, No.1, pp. 107-114, 1990 https://doi.org/10.1097/00004728-199001000-00020
  15. T.D. Brown, and A.B. Ferguson, 'Mechanical property distributions in the cancellous bone of the human proximal femur', Acta. Orthop, Scand., Vol. 51, pp. 429-437, 1980
  16. A Shirazi-Adl, M. Dammak, and G. Paiement, 'Experimental determination of friction characteristics at the trabecular bone/porus-coated metal interface in cementless implants', J. Biomed. Mater Res., Vol. 27, pp, 167-175, 1993
  17. M. Taylor, K.E. Tanner KE, and M.R. Freeman, 'Finite element analysis of the implanted proximal tibia: a relationship between the initial cancellous bone stresses and implant migration', J. Biomech., Vol. 31, pp. 303-310, 1998
  18. G. Bergmann, F. Graichen, F. Rohlmann, 'Hip joint loading during walking and running: Measured in two patients', J. Biomech., Vol. 26, pp. 969-990, 1993
  19. Black J, New York, Chapman & Hall, Hastings Garth. Handbook of Biomaterial Properties, pp. 1534-1567, 1998
  20. S. Simon. American Academy of Orthopaedic Surgeon, Orthopaedic Basic Science, pp. 558-600, 1994
  21. E. F. Morgan, and T. M. Keaveny, 'Dependence of yield strain of human trabecular bone on anatomic site', J. Biomech., Vol. 34, pp. 569-577, 2001
  22. G.D. Krischak, P. Augat, N.J. Wachter, L. Kinzl, L.E. Claes, 'Predictive value of bone mineral density and Singh Index for the in vitro mechanical properties of cancellous bone in the femoral head', Clinic. Biomech., Vol. 14, pp. 346-351, 1999