Preliminary Study on Arsenic Speciation Changes Induced by Biodegradation of Organic Pollutants in the Soil Contaminated with Mixed Wastes

유기물분해에 따른 유류${\cdot}$중금속 복합오염토양내 비소화학종 변화의 기초연구

  • 이상훈 (가톨릭대학교 생명공학부 환경공학전공) ;
  • 천찬란 (가톨릭대학교 생명공학부 환경공학전공) ;
  • 심지애 (가톨릭대학교 생명공학부 환경공학전공)
  • Published : 2003.10.01

Abstract

As industrial activities are growing, pollutants found in the contaminated land are getting diverse. Some contaminated areas are subject to mixed wastes containing both organic and inorganic wastes such as hydrocarbon and heavy metals. This study concerns with the influence of the degradation of organic pollutants on the coexisting heavy metals, expecially for As. As mainly exists as two different oxidation state; As(III) and As(V) and the conversion between the two chemical forms may be induced by organic degradation in the soil contaminated by mixed wastes. We operated microcosm in an anaerobic chamber for 60 days, using sandy loam. The soils in the microcosm are artificially contaminated both by tetradecane and As, with different combination of As(III) and As(V); As(III):As(V) 1:1, As(III) only and As(V) only. Although not systematic, ratio of As(III)/As(Total) increase slightly at the later stage of experiment. Considering complicated geochemical reactions involving oxidation/reduction of organic materials, Mn/Fe oxides and As, the findings in the study seem to indicate the degradation of the organics is connected with the As speciation. That is to say, the As(V) can be reduced to As(III) either by direct or indirect influence induced by the organic degradation. Although Fe and Mn are good oxidising agent for the oxidation of As(III) to As(V), organic degradation may have suppressed reductive dissolution of the Fe and Mn oxides, causing the organic pollutants to retard the oxidation of As(III) to As(V) until the organic degradation ceases. The possible influence of organic degradation on the As speciation implies that the As in mixed wastes may be have elevated toxicity and mobility by partial conversion from As(V) to As(III).

최근 산업활동의 종류가 점차 복잡해지면서 오염물질의 종류도 많아지고 있으며 오염물질의 성상도 점차 복합화하고 있다. 이런 경향은 과거 단일 물질에 의한 오염에서 점차 유기물과 중금속이 동시에 오염되는 것과 같은 혼합 오염형태가 증가하고 있는데서 인지된다. 본 연구는 유류와 중금속이 동시에 오염된 지역에서 유류분해에 따른 혐기성 환경전환이 비소의 농도와 화학종에 어떤 영향을 미치며 그 결과가 위해성과 정화작용에 어떤 영향을 미치는지를 확인하고자 하였다. 충적대수층에서 채취한 사질토양을 tetradecane으로 오염시킨 후 As(III)과 As(V)를 각각 1:1, As(III)로만 그리고 As(V)로만 등으로 혼합비율을 달리하여 오염시킨 후 마이크로코즘을 제작하여 혐기성 반응기안에 방치, 60일간 운전하였다. 매 10일마다 마이크로코즘을 개방하여 유기물, As(III) 및 As(V)의 농도 그리고 Fe, Mn의 농도변화를 측정하였다. 전체 As 농도에 대한 As(III)의 비율, As(III) 자체의 농도 변화 그리고 유기물 분해경향 등을 바탕으로 유기물분해에 따라 As(III)의 증가에 영향을 미치는 것이 확인되었다. Fe, Mn의 환원에 따른 As의 산화와 유기물 분해에 따른 환원이 서로 상충할 수 있으며 실제 분해 단계에 따라 어느 한쪽의 작용이 우세해지는 것으로 판단된다. 즉, Fe, Mn의 환원은 유기물의 분해에 의해 억제되었으며 유기물 분해가 상당히 진행 된 이후 Fe, Mn의 혐기성 용출이 일어나는 것으로 생각된다. 본 연구 결과는 혼합오염지역의 경우 유기물분해는 비소종의 화학형태에 영향을 미칠 것으로 예상되며 만약 As(III)의 비율이 증가할 경우 비소종의 위해성은 증가하게 될 것으로 판단되며 점차 증가하고 있는 혼합오염물 지역에 대한 정량적 위해성 평가가 요구된다.

Keywords

References

  1. 환경공학회지 v.23 폐광산 광미에서의 비소분리(speciation) 및 중금속 특성에 관한 연구 김명진;안규홍;정예진
  2. 가톨릭대학교 석사학위 논문 환경인자가 디젤오염토양의 생분해에 미치는 영향 김선영
  3. 자원환경지질 v.33 원소의 지구화학적 거동에 미치는 박테리아의 영향: 지구미생물학의 최근 연구 동향 이종운;전효택
  4. 자원환경지질 v.34 호기성환경에서 비소의 지구화학적 거동에 미치는 미생물의 영향 및 오염복구에의 적용 가능성 이종운;이상우;김경웅
  5. Arsenic in the environment, Part Ⅰ: Cycling and characterization Arsenic mobilization and bioavailability in soil Bhumbla,D.K.;Keefer,R.E.;Nriagu,J.O.(ed.)
  6. Appl. Geochem. v.9 Arsenic speciation in soil porewaters from Ashanti mine, Ghana Bowell,R.J.;Morley,N.H.;Din,V.K. https://doi.org/10.1016/0883-2927(94)90048-5
  7. Applied Geochemistry v.9 Sorption of arsenic by iron oxides and oxyhydroxsides in soils Bowell,R.J. https://doi.org/10.1016/0883-2927(94)90038-8
  8. Ground-water microbiology and geochemistry Chapelle,E.H.
  9. Environ. Sci. Technol. v.34 Arsenic adsorption and oxidation at manganese surfaces. 1. Method for simultaneous determination of adsorbed and dissolved arsenic species Chiu,V.Q.;Hering,J.G. https://doi.org/10.1021/es990788p
  10. Environ. Sci. Technol. v.32 Biotic generation of arsenic(Ⅲ) in metal(loid)-contaminated freshwater lake sediments Harrington,J.M.;Fendorf,S.E.;Rosenzweig,R.F. https://doi.org/10.1021/es971129k
  11. Geomicrobiol. J. v.19 Characterization of microbial arsenate reduction in the anoxic bottom waters of Mono lake, California Hoeft,S.E.;Lucas,F.;Hollibaugh,J.T.;Oremland,R.S. https://doi.org/10.1080/014904502317246147
  12. Arsenic in the environment, Part Ⅰ: Cycling and characterization Arsenic distribution in soils Huang,Y.C.;Nriagu,J.O.(ed.)
  13. Environ. Geosci. v.6 Does biodegradation of petroleum hydrocarbons affect the occurrence of mobility of dissolved arsenic in groundwater Klinchuch,L.A.;Delfino,T.A.;Jefferson,J.L.;Waldron,J.M. https://doi.org/10.1046/j.1526-0984.1999.08030.x
  14. Environ. Geosci. v.7 Reductive dissolution and precipitation of manganese associated with biodegradation of petroleum hydrocarbons Klinchuch,L.A.;Delfino.T.A. https://doi.org/10.1046/j.1526-0984.2000.72005.x
  15. Annu. Rev. Microbiol. v.47 Dissimilatory metal reduction Lovley,D.R. https://doi.org/10.1146/annurev.mi.47.100193.001403
  16. Environ. Sci. Technol. v.31 Speciation of arsenic(Ⅲ) and arsenic(Ⅴ) in sediment extracts by high-performance liquid chromatography-hydride generation atomic absorption spectrophotometry Manning,B.A.;Martens,D.A. https://doi.org/10.1021/es9602556
  17. Environ. Sci. Technol. v.25 Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil Masscheleyn,P.;Delaune,R.;Patrick,J.W. https://doi.org/10.1021/es00020a008
  18. Interactions between soil particles and microorganisms Interactions of bacteria and environmental metals, finegrained mineral development, and bioremediation strategies McClean,J.S.;Lee,J.U.;Beveridge,T.J.;Huang,P.M.(ed.);Bollag,J.M.(ed.);Sensei,N.(ed.)
  19. Arsenic in the environment, PartⅠ: cycling and characterization Mobilization of arsenic in contaminated river waters Mok,W.M.;Wai,C.M.;Nriagu,J.O.(ed.)
  20. Arch. Microbiol. v.168 Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Newman,D.K.;Kennedy,E.K.;Coates,J.D.;Ahmann,D.;Ellis,D.J.;Lovley,D.R.;Morel,F.M.M. https://doi.org/10.1007/s002030050512
  21. Water, Air, Soil Pollut. v.20 Oxidation and sorption of arsenite by manganese dioxide as influenced by surface coatings of iron and aluminum oxides and calcium carbonate Oscarson,D.W.;Huang,P.M.;Hammer,U.T. https://doi.org/10.1007/BF00279633
  22. Environ. Sci. Technol. v.18 Reductive dissolution and dissolution of manganese (Ⅲ) and manganese (Ⅳ) oxides by organics. 1. Reaction with hydroquinone Stone,A.T.;Morgan,J.J. https://doi.org/10.1021/es00124a011
  23. Methods in soil analysis, Part 3: Chemical methods Soil pH and soil acidity Thomas,G.W.;Sparks,D.L.(ed.)
  24. Arsenical pesticides Behavior and phytotoxicity of inorganic arsenicals in soil Walsh,L.M.;Keeney,D.R.;Woolson,E.A.(ed.)
  25. Environ. Sci. Technol. v.32 Rapid oxidation of geothermal arsenic(Ⅲ) in streamewaters of eastern Sierra Nevada Wilkie,J.A.;Hering,J.G. https://doi.org/10.1021/es970637r